• Title/Summary/Keyword: XAFS

Search Result 26, Processing Time 0.035 seconds

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Characterization of uranium species in molten salt : An application of synchrotron-based XAFS spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.10a
    • /
    • pp.319.2-319
    • /
    • 2002
  • Synchrotron-based X-ray absorption spectroscopy has been applied to determine the changes in bulk oxidation state of uranium oxides in molten salt. From an analysis of XANES data, one can determine the cahnges in bulk oxidation-state of U compounds in salts(LiCl/KCl). XAFS spectroscpy is a powerful tool for probing the changes in valence state and structure of uranium compounds in colten salt as well as in noncrystalline form and doped in other matrices.

  • PDF

Analysis of Wide-gap Semiconductors with Superconducting XAFS Apparatus

  • Shiki, S.;Zen, N.;Matsubayashi, N.;Koike, M.;Ukibe, M.;Kitajima, Y.;Nagamachi, S.;Ohkubo, M.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.99-101
    • /
    • 2012
  • Fluorescent yield X-ray absorption fine structure (XAFS) spectroscopy is useful for analyzing local structure of specific elements in matrices. We developed an XAFS apparatus with a 100-pixel superconducting tunnel junction (STJ) detector array with a high sensitivity and a high resolution for light-element dopants in wide-gap semiconductors. An STJ detector has a pixel size of $100{\mu}m$ square, and an asymmetric layer structure of Nb(300 nm)-Al(70 nm)/AlOx/Al(70 nm)-Nb(50 nm). The 100-pixel STJ array has an effective area of $1mm^2$. The XAFS apparatus with the STJ array detector was installed in BL-11A of High Energy Accelerator Research Organization, Photon Factory (KEK PF). Fluorescent X-ray spectrum for boron nitride showed that the average energy resolution of the 100-pixels is 12 eV in full width half maximum for the N-K line, and The C-K and N-K lines are separated without peak tail overlap. We analyzed the N dopant atoms implanted into 4H-SiC substrates at a dose of 300 ppm in a 200 nm-thick surface layer. From a comparison between measured X-ray Absorption Near Edge Structure (XANES) spectra and ab initio FEFF calculations, it has been revealed that the N atoms substitute for the C site of the SiC lattice.

Fabrication, temperature-dependent local structural and electrical properties of VO2 thin films

  • Jin, Zhenlan;Hwang, In-Hui;Park, Chang-In;Han, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.169.2-169.2
    • /
    • 2015
  • $VO_2$ is a well-known a metal-to-insulator-transition (MIT) material, accompanied with a first order structural phase transition near room temperature. Because of the structural phase transition and the MIT occur near a same temperature, there is an ongoing argument whether the MIT is induced by the structural phase transition. $VO_2$ exhibits a relatively weak anti-oxidization ability and can be oxidized to higher-valence oxides (e.g., $V_4$ $O_7$ or $V_2$ $O_5$) when annealed at a high temperature in an oxygen-rich atmosphere. We fabricated $VO_2$ films on $Al_2$ $O_3$ (0001) substrates using a DC magnetron sputtering deposition process with carefully control the $O_2$ percentage in an atmosphere. X-ray diffraction measurements from the films showed only (0l0) peaks with no extra peaks, indicating b-oriented films. The temperature-dependent local structural properties of $VO_2$ films were investigated by using in-situ X-ray absorption fine structure (XAFS) measurements at the V K edge. XAFS revealed that the structural phase transition was occurred nearly $70^{\circ}C$ for heating process and reproducible. Resistance measurements as a function of temperature (R-T) demonstrated that the resistance of $VO_2$ films was changed by a factor of 4 near $75^{\circ}C$ which was higher than $68^{\circ}C$ reported from a $VO_2$ bulk. We will discuss the MIT of $VO_2$ films, comparing with the local structural properties determined by XAFS measurements.

  • PDF

A Study on Phosphate Removal Efficiency by Pre-Treatment Conditioning of Oyster Shells (굴 패각의 전처리 조건에 따른 인산염 제거효율에 관한 연구)

  • Woo, Hee-Eun;Kim, Kyeongmin;Lee, In-Cheol;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2018
  • In this study, we investigated phosphate removal efficiency according to pretreatment (pyrolysis temperature, pyrolysis time, particle size) of oyster shells as a basic study for their recycling. And XAFS analysis and isothermal adsorption experiments were performed to investigate the phosphate removal characteristics of oyster shells. As a result, the removal efficiency was good at $600^{\circ}C$ pyrolysis temperature with 6 hour pyrolysis time and 0.355 ~ 0.075 mm particle size. Isothermal adsorption experiments showed that the Langmuir model is suitable for adsorption of oyster shells. XAFS analysis showed that calcium phosphate formed on the oyster shell pyrolyzed at $600^{\circ}C$. In other words, it was confirmed that the formation of calcium phosphate by the calcium ion elution of the oyster shell contributes to the decrease of phosphate concentration.

Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater

  • Shafiquzzam, Md.;Hasan, Md. Mahmudul;Nakajima, Jun
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.163-168
    • /
    • 2013
  • In this study, an innovative media, iron mixed ceramic pellet (IMCP) has been developed for arsenic (As) removal from groundwater. A porous, solid-phase IMCP (2-3 mm) was manufactured by combining clay soil, rice bran, and Fe(0) powder at $600^{\circ}C$. Both the As(III) and As(V) adsorption characteristics of IMCP were studied in several batch experiments. Structural analysis of the IMCP was conducted using X-ray absorption fine structure (XAFS) analysis to understand the mechanism of As removal. The adsorption of As was found to be dependent on pH, and exhibited strong adsorption of both As(III) and As(V) at pH 5-7. The adsorption process was described to follow a pseudo-second-order reaction, and the adsorption rate of As(V) was greater than that of As(III). The adsorption data were fit well with both Freundlich and Langmuir isotherm models. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Phosphorus in the water had an adverse effect on both As(III) and As(V) adsorption. Scanning electron microscopy results revealed that iron(III) oxides/hydroxides are aggregated on the surface of IMCP. XAFS analysis showed a partial oxidation of As(III) and adsorption of As(V) onto the iron oxide in the IMCP.