• Title/Summary/Keyword: XAD-II

Search Result 28, Processing Time 0.028 seconds

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF

Separation of Th(IV) and U(VI) Using Arsenazo I-XAD-16 Chelating Resin (Arsenazo I-XAD-16 킬레이트 수지를 이용한 Th(IV)과 U(VI)의 분리)

  • Suh, Jung-Min;Kim, Min-Kyun;Lim, Jae-Hee;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.397-404
    • /
    • 1995
  • Three Arsenazo I-XAD Chelating resins, with different surface areas and pore sizes were synthesized and characterized. The total sorption capacities of these chelating resins for Cu(II) at pH 5.0 by batch method decreased as follows, Arsenazo I-XAD-16(0.59mmol/g)>Arsenazo I-XAD-4(0.56mmol/g)>Arsenazo I-XAD-2(0.38mmol/g). The sorption and desorption properties of Arsenazo I-XAD-16 chelating resins for U(VI), Th(IV), Hf(IV), Zr(IV), Ni(II), Mn(II), Cd(II). and Cu(II) were studied by both batch and elution method. The Arsenazo I-XAD-16 chelating resin was successfully applied to the separation and concentration of trace U(VI) and Th(IV) in sea and waste waters.

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

A Study on the Adsorption and Recovery of Metal Ions by Amberlite XAD Resins Impregnated with Oxime Compounds (Oxime 화합물을 침윤시킨 Amberlite XAD 수지에 의한 금속이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Eum Chul Hun;Young Hee Kim;Euy Kyung Yu
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 1985
  • The adsorption behaviors of some oxime compounds well known as metal chelating agents on the Amberlite XAD resins were compared by measuring their distribution coefficients (log Kd) in various media, respectively. Among the oxime compounds, salicylaldoxime (SAO) and $\alpha-benzoinoxime(${\alpha}$-BzO)$ which showed large log Kd values were chosen. The characteristics of XAD-4 resins impregnated with SAO and ${\alpha}$-BzO have been studied to apply them for the adsorption and recovery of minute quantities of metal ions in aqueous solution. The optimum conditions for adsorption of SAO and ${\alpha}$-BzO on the resin were 30% methanol media having pH range of 1~8(for SAO) and 1~9 (for ${\alpha}$-BzO), respectively. The distribution coefficients of two oxime compounds were decreased as temperature increased. From the adsorption enthalpy data of SAO and ${\alpha}$-BzO, ranging from 4.96 to 6.66 Kcal/mol, it is suggested that their adsorption mechanism on XAD-4 resin is likely due to molecular adsorption equivalent to dipole-dipole interaction. The impregnated resins were considerably stable in the aqueous solutions of pH 5.0~10.0 and in 0.1~5M hydrochloric acid solutions. The former is the medium for adsorption of metal ions, while the latter is for recovery of the adsorbed metal ions. The adsorption mole ratio of Mn(II), Co(II), Ni(II), Zn(II) ions on SAO-XAD-4 and ${\alpha}$-BzO-XAD-4 resins were about 1 : 2 at the optimum conditions, respectively. The adsorbed metal ions were recovered completely by eluting with 3M HCl-50% methanol solution

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

New Analytical Methods for Separation and Identification of Heavy Metals (II). A Study on the Adsorption and Recovery of Cu(Ⅱ) ion by Amberlite XAD-7 Resins Impregnated with Chelating Agents (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 2 보) 킬레이트제-Amberlite XAD-7 침윤수지에 의한 Cu(II) 이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Chul Hun Eum;Tae Sung Kim;Doo-Soon Shin;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 1987
  • The adsorption behavior of some chelating agents on the Amberlite XAD-7 resin was studied to obtain the optimum conditions for the preparation of chelating agent-XAD-7 resins. The chosen chelating agents are cupferron (CP), diphenylcarbazone (DPC), salicylaldoxime (SAO), thiosalicylic acid (TSA), and dimethylglyoxime (DMG), which have been well known chelating agents to Cu(Ⅱ) and Ni (Ⅱ) ions. Among the chelating agent-XAD-7 resins, SAO-XAD-7 and DMG-XAD-7 resins were evaluated as appropriate impregnated resins by investigating their stabilities in the wide pH range and high abilities to adsorb Cu(Ⅱ) and Ni(Ⅱ) ions. The selective adsorption of Cu(Ⅱ) from Ni(Ⅱ) was possible by changing pH condition by SAO-XAD-7 resin. The adsorption capacities of SAO-XAD-7 and DMG-XAD-7 for Cu(Ⅱ) were $7{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin and $2{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin, respectively. The quantitative recovery of Cu(Ⅱ) adsorbed by the resin was demonstrated. The adsorption behavior of Cu(Ⅱ) and Ni(Ⅱ) by the single and mixed bed of chelating agent-XAD-7 resin was discussed.

  • PDF

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (II). 5,7-Dihalo-8-Hydroxyquimoline(DXHQ)-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제2보). 5,7-Dihalo-8-Hydroxyquinoline (DXHQ)-침윤수지)

  • Dai Woon Lee;Chul Hun Eum;Yong Soon Chung;Kyu Chang Park
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.403-411
    • /
    • 1984
  • Amberlite XAD-7 and XAD-4 resins impregnated with DXHQ (5,7-dihalo-8-hydroxyquinoline) were prepared for the adsorption, separation and recovery of heavy metal ions from aqueous solutions. The characteristics of the impregnated resins, DXHQ (X : Cl, Br, I)-XAD were studied to find out the proper pairs of resin and DXHQ for the adsorption of metal ions. The increasing order of the impregnated amount of DXHQ onto XAD-7 resin was as follows: DCHQ < DBHQ < DIHQ. It was observed from the plot of log $K_d$ vs. pH that the optimum pH range for the adsorption of DIHQ onto XAD-4 resin was from 3.0 to 7.0. The stabilities of the DXHQ-XAD resins were investigated by measuring the amount of DXHQ remained on the XAD resin after shaking the DXHQ-XAD resins in various solutions of pH ranging from 2 to 12 and hydrochloric acid solutions. The impregnated resins were considerably stable in both acidic and neutral solutions. The amount of DIHQ leached from DIHQ-XAD-4 resin by eluting with various HCl solutions (1 ∼ 5M) was negligible, but in the case of XAD-7 resin it increases as the concentration of HCl solution increases. The optimum pH ranges, absorption mole ratio (M : DXHQ) and adsorption capacities (mmol metal per gram of resin) for the adsorption of metal ions onto the DXHQ-XAD resins were determined respectively. The stability of metal ion absorbed by the DXHQ-XAD resins was observed as the following order: M-DCHQ-XAD-7 < M-DBHQ-XAD-7 < M-DIHQ-XAD-7. The adsorbed metal ions were quantitatively recovered by eluting with HCl (0.5 ∼ 5M) and DXHQ-XAD resins could be reused over 5 times without re-impregnation of DXHQ.

  • PDF

Studies on the Sorption Behavior of Some Metal Ions using XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지를 이용한 몇 가지 금속이온의 흡착거동에 관한 연구)

  • Lee, Won;Kim, Mi-Kyoung;Kim, In-Whan;Kim, Jun-Yong;Kim, Jung-Sook
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-463
    • /
    • 2004
  • The sorption behavior of some metal ions on XAD-16-CTA chelating resin was investigated by batch method. The sorption of chelating resin was highly selective for Hf(IV), Zr(IV) and Th(IV) at pH 3.0 ~ 6.0 and the maximum sorption capacity of Zr(IV) ion was 0.81 mmol/g. It was successfully applied to the separation of several rare metal ions from mixed metal solutions by using CDTA, EDTA, NTA and $NH_4F$ as masking agent. The elution order of metal ions obtained from breakthrough capacity and the overall capacity at pH 4.0 was Zr(IV)>Th(IV)>Hf(IV)>U(VI)>Cu(II)>In(III)>Pb(II). Desorption characteristics for metal ions was investigated with desorption agents such as HCl, $HNO_3$, $HClO_4$. 2 M HCl showed high desorption efficiency. Th(IV) ion can be successfully separated from mixed metal ions by using XAD-16-CTA cheating resin.

Studies on the Separation and Preconcentration of Metal Ions by XAD-16-[4-(2-thiazolylazo)] orcinol Chelating Resin (XAD-16-[4-(2-thiazolylazo)]orcinol 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구)

  • Lee, Won;Seol, Kyung-Mi;An, Hye-Sook;Lee, Chang-Heon;Lim, Jae-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.282-290
    • /
    • 1997
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[4-(2-thiazolylazo)orcinol] (TAO) chelating resin were studied by elution method. The effect was examined with respect to overall capacity of each metal ion, separation of mixed metal ions, flow rate and concentration of buffer solution for optimum condition of sorption. The overall capacities of some metal ions on this chelating resin were 0.35nmol U(VI)/g resin, 0.49nmol Th(IV)/g resin, 0.41nmol Cu(II)/g resin, and 0.31nmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Mn(II)>Cd(II). The group separation of mixed metal ions was possible by increasing pH in pH range 2~5 at a flow rate of 0.28mL/min. Characteristics of desorption were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that 2M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV) ion. Also, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. Recovery of trace amount of U(VI) ion from artificial sea water was over 94%. The chelating resin, XAD-16-TAO was successfully applied to group separation of rare earth metal ions from U(VI) by using 2M $HNO_3$ as an eluent.

  • PDF

Preconcentration of Iron(III), Lead(II), Cobalt(II) and Chromium(III) on Amberlite XAD-1180 Resin Loaded with 4-(2-Pyridylazo)-resorcinol (PAR) and Their Determination by FAAS

  • Tokalloglu, Serife;Kartal, Senol
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1293-1296
    • /
    • 2006
  • In this study, a solid phase extraction method has been developed for the preconcentration and separation of the elements Cr(III), Fe(III), Co(II) and Pb(II) at trace levels by using a column packed with Amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) reagent. After preconcentrating, the metals retained on the column were eluted with 20 mL of 3 mol/L $HNO_3$ and then determined by flame atomic absorption spectrometry (FAAS). The factors affecting the recovery of the elements, such as pH, type and concentration of eluent, volume of sample and elution solution, and matrix components, were also ascertained. The recoveries of Cr(III), Fe(III), Co(II) and Pb(II) were found to be $99\;{\pm}\;4,\;97\;{\pm}\;3,\;95\;{\pm}\;3$ and $98\;{\pm}\;4$%, respectively, under the optimum conditions at 95% confidence level and the relative standard deviations found by analyzing of nine replicates were $\leq4.4$%. The preconcentration factors for Cr(III), Fe(III), Co(II) and Pb(II) were found as 75, 125, 50 and 75 respectively. The detection limits (DL, 3s/b) were 3.0 $\mu g/L$ for Cr(III), 1.25 $\mu g/L$ for Fe(III), 3.3 $\mu g/L$ for Co(II), and 7.2 $\mu g/L$ for Pb(II). The recoveries achieved by adding of metals at known concentrations to samples and the analysis results of Buffalo river sediment (RM 8704) show that the described method has a good accuracy. The proposed method was applied to tap water, stream water, salt and street dust samples.