• Title/Summary/Keyword: XAD resin

Search Result 85, Processing Time 0.026 seconds

A comparative study for adsorption of carbolic acid by synthetic resins

  • Uslu, Hasan;Bamufleh, Hisham S.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.

A Study on the Adsorption and Recovery of Metal Ions by Amberlite XAD Resins Impregnated with Oxime Compounds (Oxime 화합물을 침윤시킨 Amberlite XAD 수지에 의한 금속이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Eum Chul Hun;Young Hee Kim;Euy Kyung Yu
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 1985
  • The adsorption behaviors of some oxime compounds well known as metal chelating agents on the Amberlite XAD resins were compared by measuring their distribution coefficients (log Kd) in various media, respectively. Among the oxime compounds, salicylaldoxime (SAO) and $\alpha-benzoinoxime(${\alpha}$-BzO)$ which showed large log Kd values were chosen. The characteristics of XAD-4 resins impregnated with SAO and ${\alpha}$-BzO have been studied to apply them for the adsorption and recovery of minute quantities of metal ions in aqueous solution. The optimum conditions for adsorption of SAO and ${\alpha}$-BzO on the resin were 30% methanol media having pH range of 1~8(for SAO) and 1~9 (for ${\alpha}$-BzO), respectively. The distribution coefficients of two oxime compounds were decreased as temperature increased. From the adsorption enthalpy data of SAO and ${\alpha}$-BzO, ranging from 4.96 to 6.66 Kcal/mol, it is suggested that their adsorption mechanism on XAD-4 resin is likely due to molecular adsorption equivalent to dipole-dipole interaction. The impregnated resins were considerably stable in the aqueous solutions of pH 5.0~10.0 and in 0.1~5M hydrochloric acid solutions. The former is the medium for adsorption of metal ions, while the latter is for recovery of the adsorbed metal ions. The adsorption mole ratio of Mn(II), Co(II), Ni(II), Zn(II) ions on SAO-XAD-4 and ${\alpha}$-BzO-XAD-4 resins were about 1 : 2 at the optimum conditions, respectively. The adsorbed metal ions were recovered completely by eluting with 3M HCl-50% methanol solution

  • PDF

Optimal Culture Conditions and XAD Resin on Tropane Alkaloid production in Scopolia parviflora Hairy Root Cultures (미치광이풀 모상근의 배양조건 구명 및 XAD Resin 처리에 의한 Tropane Alkaloid 생산)

  • 정희영;강민정;강영민;윤대진;박정동;정영관;최명석
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.525-530
    • /
    • 2002
  • The optimum culture conditions for tropane alkaloid production in hairy root cultures of Korea native Scopolia paviflora Nak. were investigated. Hairy root was induced from the rhizome of the mother plant on B5 medium containing 1.0 mg/L IBA. Among the culture media examined, 1/2 B5 medium was the best for tropane alkaloid production, whereas the growth of hairy root increased in SH medium. The best result on the growth of hairy root was obtained in 1.0 mg/L NAA, and tropane alkaloid production was obtained in plant growth regulator-free medium. Of the carbone sources tested, 3% sucrose promoted the growth of hairy root, whereas 5% sucrose increased tropane alkaloid production. Optimum inoculum densities for root growth and tropane alkaloid production were 0.5 g and 1 g, respectively. The addition of XAD resins (1 % w/v) to hairy root cultures led to increases in tropans alkaloid production, and the release of alkaloid into the medium and its adsorption by the resin accounted for about 50 to 80% of total production. It is concluded that optimized culture conditions and the addition of XAD resins could be used in the development of a bioprocess for tropane alkaloid production in hairy root cultures of S. paviflora Nak.

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Furfural Production and Recovery by Two-stage Acid Treatment of Lignocellulosic Biomass (Two-stage 산 처리에 의한 목질계 바이오매스로부터 푸르푸랄 생산과 회수)

  • Shin, Gyeong-Jin;Jeong, So-Yeon;Lee, Hong-Joo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.76-85
    • /
    • 2015
  • In this study, we investigated optimal reaction conditions for furfural production from lignocellulosic biomass by two-stage acid treatment. Furfural produced by this method was recovered using XAD-4 resin. Oxalic and sulfuric acid were used as catalysts for the first stage of treatment. The concentration of xylose in the hydrolysate obtained from the first stage was $18.86g/{\ell}$ with oxalic acid and $19.35g/{\ell}$ with sulfuric acid. The concentration of oligosaccharide was relatively high when sulfuric acid was used. Maximum yield of furfural, that is, 55.10% ($6.71g/{\ell}$), was obtained when oxalic acid was used for the first stage and $0.1m{\ell}$ of sulfuric acid was used for the second stage of treatment for 90 min. Furfural production yield increased with increasing the reaction time. Most of the furfural produced by this two-stage treatment method was recovered using XAD-4 resin.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by XAD-16-[4-(2-thiazolylazo)] orcinol Chelating Resin (XAD-16-[4-(2-thiazolylazo)]orcinol 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구)

  • Lee, Won;Seol, Kyung-Mi;An, Hye-Sook;Lee, Chang-Heon;Lim, Jae-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.282-290
    • /
    • 1997
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[4-(2-thiazolylazo)orcinol] (TAO) chelating resin were studied by elution method. The effect was examined with respect to overall capacity of each metal ion, separation of mixed metal ions, flow rate and concentration of buffer solution for optimum condition of sorption. The overall capacities of some metal ions on this chelating resin were 0.35nmol U(VI)/g resin, 0.49nmol Th(IV)/g resin, 0.41nmol Cu(II)/g resin, and 0.31nmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Mn(II)>Cd(II). The group separation of mixed metal ions was possible by increasing pH in pH range 2~5 at a flow rate of 0.28mL/min. Characteristics of desorption were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that 2M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV) ion. Also, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. Recovery of trace amount of U(VI) ion from artificial sea water was over 94%. The chelating resin, XAD-16-TAO was successfully applied to group separation of rare earth metal ions from U(VI) by using 2M $HNO_3$ as an eluent.

  • PDF

수돗물 중 강력한 돌연변이유발물질인 MX에 대한 분석

  • 권오영;김희갑
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.153-153
    • /
    • 2002
  • 수돗물의 염소소독 과정에서 부식질의 초기 분해생성물인 MX(Mutagen X)는 수돗물의 전체 돌연변이유발성의 최고 60%까지 차지하는 것으로 알려져 있다. 그러나 존재하는 농도는 수 ng/L로 정량분석을 위해서는 resin을 사용하여 10 ~ 20L의 물을 농축하여야 한다. 이 연구에서 MX의 농축에 사용된 resin은 XAD-4와 XAD-7HP의 1:1 mixture이었으며, 사용 전에 Soxhlet extractor를 사용하여 ethyl acetate와 methanol로 각각 12시간씩 세척하였다. 15L의 물 시료는 37%의 염산으로 pH 2에 맞춘 후 직경 2cm의 유리관에 15cm의 높이로 채워진 resin을 40mL/min의 유속으로 통과시켰다. 유리관에 잔류하는 물은 질소가스로 대부분 불어 제거한 후 ethyl acetate 200mL를 가해 1mL/min의 유속으로 흘려주어 MX를 용출시킨 후 회전증발기로 5mL의 부피까지 농축시키고 10% H$_2$SO$_4$ in MeOH 0.1mL를 가하여 6$0^{\circ}C$에서 methyl ester화하였다. 과포화된 $Na_2$SO$_4$ 수용액 0.3ml를 가한 후 MTBE 0.3mL로 추출하고 GC/ECD로 분석하였다. MX의 회수율은 60% 이상이었으며 일부수돗물 시료에 대해 분석하였다.

  • PDF

Selective Separation and Determination of Iron with Ion-Exchange Resins (이온교환수지에 의한 철의 선택적 분리 및 정량)

  • Yong Soon Chung;Dong Won Kim;Seung Ho Kim;Dai Woon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 1987
  • Dowex 1-X8 resin ion exchanged with calcon carboxylic acid (CCA-Dowex 1-X8) and 2-methyl-8-hydroxyquinoline(MHQ) impregnated-Amberlite XAD-4 resin (MHQ-XAD-4) were examined for the separation and preconcentration of ferric ion from the various matrices. The stabilities of these resins were investigated, and their capacities on ferric ion were also measured. The effect of pH on the adsorption of ferric ion and matrix ions, such as Al(Ⅲ) and Ca(Ⅱ), was investigated to determine the optimun pH ranges. Separation and preconcentration of iron in aluminium foil and mineral water samples were studied by elution method with these resin columns. The recovered ions by 10ml of 2F nitric acid was determined by flame atomic spectrophotometry. SP-Sephadex C-25 column was used to separate ferrous and ferric ion in mineral water by stepwise elution with ferrozine and 1 % ascorbic acid-ferrozine solution. The concentrated and separated each ion could be determined spectrophotometrically at the analytical wavelenth of Fe(Ⅱ)-ferrozine complex (562nm).

  • PDF