• 제목/요약/키워드: X-rays: galaxies

검색결과 31건 처리시간 0.019초

MERGERS, COSMIC RAYS, AND NONTHERMAL PROCESSES IN CLUSTERS OF GALAXIES

  • SARAZIN CRAIG L.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.433-438
    • /
    • 2004
  • Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.

DETECTION OF X-RAY EMISSION FROM GALAXIES INSIDE AND TOWARDS THE NEARBY VOIDS

  • KIM CHULHEE;BOLLER TH.;GHOSH KAJAL K.
    • 천문학회지
    • /
    • 제38권1호
    • /
    • pp.1-6
    • /
    • 2005
  • We searched for X-ray emission from the 665 galaxies inside and towards the nearby voids by analyzing the ROSAT All-Sky Survey (RASS) data as well as the ROSAT pointed observations (PSPC). As a result we have detected six X-ray emitting galaxies. Two (UGC 10205 and NGC 7509) are in the high density region in the local void, three (UGC 749, MCG +11-10-073, and Mrk 464) are towards the nearby voids, and UGC 32 is located in the low density region. We carried out a timing analysis for both Mrk 464 and UGC 32, and a spectral analysis for Mrk 464. The light curve of Mrk 464 shows the possibility of periodic X-ray flux variation and UGC 32 shows weak, but rapid variation.

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

CHANDRA X-RAY OBSERVATIONS OF EARLY TYPE GALAXIES

  • KIM DONG-WOO
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.213-222
    • /
    • 2003
  • We review recent observational results on early type galaxies obtained with high spatial resolution Chandra data. With its unprecedented high spatial resolution, Chandra reveals many intriguing features in early type galaxies which were not identified with the previous X-ray missions. In particular, various fine structures of the hot ISM in early type galaxies are detected, for example, X-ray cavities which are spatially coincident with radio jets/lobes, indicating the interaction between the hot ISM and radio jets. Also point sources (mostly LMXBs) are individually resolved down to Lx = a few x $10^{37}\;erg\;sec^{-1}$ and it is for the first time possible to unequivocally investigate their properties and the X-ray luminosity function. After correcting for incompleteness, the XLF of LMXBs is well reproduced by a single power law with a slope of -1.0 - -1.5, which is in contrast to the previous report on the existence of the XLF break at Lx, Eddington = 2 x $10^{38}\;erg\;sec^{-1}$ (i.e., Eddington luminosity of a neutron star binary). Carefully considering both detected and undetected, hidden populations of point sources we further discuss the XLF of LMXBs and the metal abundance of the hot ISM and their impact on the properties of early type galaxies.

ACTIVE GALACTIC NUCLEUS INTERACTION WITH THE HOT GAS ENVIRONMENT: UNDERSTANDING FROM THE RADIO AND X-RAY DATA

  • LAL, DHARAM V.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.423-427
    • /
    • 2015
  • Recognition of the role of radio galaxies in the universe has been increasing in recent years. Their colossal energy output over huge volumes is now widely believed to play a key role not only in the formation of galaxies and their supermassive black holes, but also in the evolution of clusters of galaxies and, possibly, the cosmic web itself. In this regard, we need to understand the inflation of radio bubbles in the hot gas atmospheres of clusters and the importance of the role that radio galaxies play in the overall energy budget of the intracluster medium. Here, we present results from X-ray and radio band observations of the hot gas atmospheres of powerful, nearby radio galaxies in poor clusters.

X-RAY ARCHIVAL DATA ANALYSIS OF TIME VARIABILITIES IN SEYFERT GALAXY MCG-2-58-22

  • CHOI CHUL-SUNG;DOTANI TADAYASU;YI INSU;FLETCHER ANDRE;KIM CHULHEE
    • 천문학회지
    • /
    • 제34권3호
    • /
    • pp.129-135
    • /
    • 2001
  • We report results from an analysis of the X-ray archival data on MCG-2-58-22 obtained with Ginga, ROSAT and ASCA. By analyzing both short- and long-term light curves, we find clear time variations, ranging widely from, $\~10^3$ s to more than several years, in the X-ray energy range 0.1 - 10 keV. In addition, a flare is detected in 1991, overlaid on a gradual, secular flux decrease from 1979 to 1993; this flare has a time scale of about 1 year, and the X-ray flux increased by at least a factor of 3. The implications of these observational results are discussed in terms of accretion flow dynamics near a supermassive black hole.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

HOT GAS HALOS IN EARLY-TYPE GALAXIES AND ENVIRONMENTS

  • Kim, Eunbin;Choi, Yun-Young;Kim, Sungsoo S.
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.33-40
    • /
    • 2013
  • We investigate the dependence of the extended X-ray emission from the halos of optically luminous early-type galaxies on the small-scale (the nearest neighbor distance) and large-scale (the average density inside the 20 nearest galaxies) environments. We cross-match the 3rd Data Release of the Second XMMNewton Serendipitous Source Catalog (2XMMi-DR3) to a volume-limited sample of the Sloan Digital Sky Survey (SDSS) Data Release 7 with $M_r$ < -19.5 and 0.020 < z < 0.085, and find 20 early-type galaxies that have extended X-ray detections. The X-ray luminosity of the galaxies is found to have a tighter correlation with the optical and near infrared luminosities when the galaxy is situated in the low large-scale density region than in the high large-scale density region. Furthermore, the X-ray to optical (r-band) luminosity ratio, $L_X/L_r$, shows a clear correlation with the distance to the nearest neighbor and with large-scale density environment only where the galaxies in pair interact hydrodynamically with seperations of $r_p$ < $r_{vir}$. These findings indicate that the galaxies in the high local density region have other mechanisms that are responsible for their halo X-ray luminosities than the current presence of a close encounter, or alternatively, in the high local density region the cooling time of the heated gas halo is longer than the typical time between the subsequent encounters.

A SPECTROSCOPIC STUDY OF THE SEYFERT GALAXY MCG-2-58-22

  • Choi, Chul-Sung;Dotani, Tadayasu;Chang, Heon-Young
    • 천문학회지
    • /
    • 제38권3호
    • /
    • pp.339-344
    • /
    • 2005
  • We present analysis results of the energy spectra of MCG-2-58-22 associated with occasional flares which appear in a long-term X-ray light curve. We measure an intrinsic power-law slope of this object to be ${\Gamma}=1.74{\pm}0.02$ in the energy range of ${\sim}1-5keV$ and find that this slope is little affected by flares. We confirm that there exists a broad excess emission above 5 keV to the power-law continuum. The excess emission is less variable compared with a flux variation of flare and tends to be relatively weak during flares. A soft X-ray spectrum is also found to change, implying the presence of a variable soft component. We discuss the implications of these spectral variations.

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.