• Title/Summary/Keyword: X-ray source

Search Result 791, Processing Time 0.028 seconds

Exposure Time and X-Ray Absorber thickness in the LIGA Process (LIGA 공정에서의 노광시간과 X선마스크 흡광체의 두께)

  • 길계환;이승섭;염영일
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • The LIGA X-ray exposure step was modelled into three inequalities, by assuming that the X-ray energy attenuated within a resist is deposited only in the localized range of the resist. From these inequalities, equations for the minimum and maximum exposure times required for a good quality microstructure were obtained. Also, an equation for the thickness of an X-ray mask absorber was obtained from the exposure requirement of threshold dose deposition. The calculation method of the synchrotron radiation power from a synchrotron radiation source was introduced and applied to an X-ray exposure step. A power from a synchrotron radiation source was introduced and applied to an X-ray exposure step/ A power function of photon energy, approximating the attenuation length of the representative LIGA resist, PMMA, and the mean photon energy of the XZ-rays incident upon an X-ray mask absorber were applied to the above mentioned equations. Consequently, the tendencies of the minimum and maximum exposure and with respect to mean photon energy and thick ness of PMMA was obtained. Additionally, the tendencies of the necessary thickness of PMMA and photon energy of the X-ray mask absorber with respect to thickness of PMMA and photon energy of the X-rays incident upon an X-ray mask absorber were examined. The minimum exposure time increases monotonically with increasing mean photon energy for the same total power density and is not a function of the thickness of resist. The minimum exposure time increases with increasing mean photon energy for the same total power density in the case of the general LIGA process, where the thickness of PMMA is thinner than the attenuation length of PMMA. Additionally, the minimum exposure time increases monotonically with increasing thickness of PMMA. The maximally exposable thickness of resist is proportional to the attenuation length of the resist at the mean photon energy with its proportional constant of ln $(Dd_m/D_{dv})$. The necessary thickness of a gold X-ray mask absorber due to absorption edges of gold, increases smoothly with increasing PMMA thickness ratio, and is independent of the total power density itself. The simplicity of the derived equations has made clearly understandable the X-ray exposure phenomenon and the correlation among the exposure times, the attenuation coefficient and the thickness of an X-ray mask absorber, the attenuation coefficient and the thickness of the resist, and the synchrotron radiation power density.

  • PDF

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon;Hwang, Byung-Jun;Seo, Okkyun;Kim, Jae Myung;Noh, Do Young;Ko, Do-Kyeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1834-1839
    • /
    • 2018
  • A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

The Effects on Escherichia coli and Plasmid DNA Using Ultrasoft X-ray (Ultrasoft X-ray의 Escherichia coli균과 plasmid DNA에 대한 영향)

  • ;;;;;Seiya Chiba;Atsuo Kimura
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.84-87
    • /
    • 2000
  • We studied the effect of ultrasoft X-ray obtained from the Pohang Light Source (PLS), on the mutation of E. coli and the damage of plasmid. After irradiation, the supercoiled plasmid DNA converted to the relaxed-form, and then to the linear-form. We transformed the irradiated plasmid DNA and isolated $\beta$-galactosidase mutants. We also isolated $\beta$-galactosidase mutants from the directly irradiated cells. There were preferred mutational sites on DNA induced by ultrasoft X-ray.

  • PDF

Visualization of Water-uptake Process in Excised Roots of Arabidopsis using Synchrotron X-ray Imaging Technique (가속기 X선 영상기법을 이용한 애기장대 뿌리털의 물 흡수과정 가시화)

  • Hwang, Bae-Geun;Kim, Hae-Koo;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.48-53
    • /
    • 2010
  • Water-uptake through roots, is an essential process of the water flow in plants. Its visualization is very useful for understanding sap flow dynamics at whole plant level. In this study, the tips of Arabidopsis' root hairs were excised and exposed to repeated dehydration and rehydration processes. The water-refilling through individual xylem vessels was visualized using the synchrotron X-ray micro-imaging technique. The high temporal resolution ($2\;{\mu}m$) and beam intensity of the X-ray source allowed to acquisition of consecutive X-ray images of the water-refilling process up to 10 frames/sec. Various flow patterns were observed and the ascending speed of the water-air interfaces was analyzed. The relation between the water-rising height and ascending speed was also analyzed. The present results would provide better alternative for investigating sap flows in roots.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

Contact Microscopy by Using Soft X-ray Radiation from Iodine Laser Produced Plasma (옥소레이저 플라즈마에서 발생된 연 X-선을 이용한 밀착현미경기술)

  • 최병일;김동환;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 1990
  • Laser plasma was generated by a 1GW iodine photodissociation laser ($\lambda$=1.315$\mu\textrm{m}$, E=12.7J) whose output beam was focused on a molybdenum target surface. The experiment was conducted in a vacuum chamber under 1D-sTorr and several tens of laser shooting were necessary for sufficient exposure for the PBS resist of 111m thickness. Aluminium was coated on the top of the resist by 0.1$\mu\textrm{m}$ thickness which acts as an X-ray filter to cut off the visible and the ultraviolet lights. A bio-specimen was put directly on the aluminium coated resist and located at a distance of 3 cm from the X-ray source. The replicas of a steel mesh, spider's web. and a red blood cell were obtained by this technique and were observed by Nomarski microscope and SEM. The limitation of its resolution is determined by the X-ray source size and Fresnel diffraction effect, and its theoretical prediction is well matched with the experimental results. In this experiment, a resolution better than 0.1$\mu\textrm{m}$ could be obtained. ained.

  • PDF

Computer Simulation for Development of Micro-Focus X-ray Generator (미소초점엑스선원 개발을 위한 전산모사)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.403-408
    • /
    • 2011
  • To develop the MFX (Micro-Focus X-ray) tube, the trajectories of electrons emitted from the field emission cathode was simulated using SIMION program. Regardless of starting position of the electron in emitter, we found out the fact that there is the optimum extractor voltage Ve, which can focus the electron beam on one place. Extractor voltage Ve varies depending on the source voltage Vs, but the ratio of two voltages (Ve/Vs) is always constant, its value was 99.4%. When the ratio of two voltages (Ve/Vs) was 99.4%, the beam diameter in the cross-over point was $1.2{\mu}m$. Because the focal spot size in MFXG (Micro-Focus X-ray Generator) can not be less than the cross-over diameter within MFX tube, it is important to find out the conditions that can make a smaller beam diameter. Therefore, the above results is considered to be a very important ones in the development of the MFXG.

An X-ray Image Panorama System Using Robust Feature Matching and Per ception-Based Image Enhancement

  • Wang, Weiwei;Gwun, Oubong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.569-576
    • /
    • 2012
  • This paper presents an x-ray medical image panorama system which can overcome the smallness of the images that exist on a source computer during remote medical processing. In the system, after the standard medical image format DICOM is converted to the PC standard image format, a MSR algorithm is used to enhance X-ray images of low quality. Then SURF and Multi-band blending are applied to generate a panoramic image. Also, this paper evaluates the proposed SURF based system through the average gray value error and image quality criterion with X-ray image data by comparing with a SIFT based system. The results show that the proposed system is superior to SIFT based system in image quality.

Regional Image Noise Analysis for Steel-tube X-ray Image (강판튜브 엑스선 영상의 영역별 영상잡음 특성분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.32-34
    • /
    • 2007
  • The X-ray projection system has long been used for steel-tube inspection and weld monitoring. The thickness of tubes and welded areas is based on the evaluation of radiographic shadow projections. The traditional tangential measurement estimates the distance of border lines of the projected wall shadows of a tube onto a radiographic image detector. The detected image in which although there is a variety of noise may be sectioned into several partitions according to its specific blocks. Imaging noise originates from most of elements of the system, such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc. The tangential projection incorrectness and noise influence on imaging quality. In this paper we first sectionalize the X-ray image on the basis of vertical contrast difference. And next functional and statistic analysis are carried on at each region. Geometrical distance and unsharpness of the edge caused by visual evaluation uncertainties are also discussed.

  • PDF

X-ray Data Analysis to Search for Magnetar Candidates in the Galactic Plane

  • Park, Woochan;An, Hongjun
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.133-141
    • /
    • 2018
  • We report on our Galactic plane searches for magnetars in the archival Chandra X-ray Observatory (CXO) data. We summarize the properties of known magnetars and use them to establish a procedure for magnetar searches. The procedure includes four steps: source finding, spectral characterization, optical counterpart checks, and period searches. We searched 1,282 archival CXO observations, found 32,838 X-ray sources, and selected 25 intriguing candidates using the developed procedure. Although we do not firmly identify a magnetar among them, we significantly reduced the number of targets in future magnetar searches to be done with better X-ray telescopes.