• Title/Summary/Keyword: X-ray single crystallography

Search Result 72, Processing Time 0.016 seconds

Crystal Structures of Dehydrated Partially $Sr^{2+}$-Exchanged Zeolite X, $Sr_{31}K_{30}Si_{100}A1_{92}O_{384}\;and\;Sr_{8.5}TI_{75}Si_{100}AI_{92}O_{384}$ (부분적으로 스트론튬이온으로 교환되고 탈수된, 제올라이트 X의 결정구조)

  • Kim Mi Jung;Kim Yang;Seff Karl
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 1997
  • The crystal structures of $Sr_{31}K_{30}-X\;(Sr_{31}K_{30}Si_{100}A1_{92}O_{384};\;a=25.169(5) {\AA}$) and $Sr_{8.5}Tl_{75}-X (Sr_{8.5}Tl_{75}Si_{100}A1_{92}O_{384};\;a=25.041(5) {\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group $\=F{d3}\;at\;21(1)^{\circ}C$. Each crystal was prepared by ion exchange in a flowing stream of aqueous $Sr(ClO_4)_2\;and\;(K\;or\;T1)NO_3$ whose mole ratio was 1 : 5 for five days. Vacuum dehydration was done at $360^{\circ}C$ for 2d. Their structures were refined to the final error indices $R_1=0.072\;and\;R_w=0.057$ with 293 reflections, and $R_1= 0.058\;and\;R_w=0.044$ with 351 reflections, for which $I>2{\sigma}(I)$, respectively. In dehydrated $Sr_{31}K_{30}-X,\;all\;Sr^{2+}$ ions and $K^+$ ions are located at five different crystallographic sites. Six-teen $Sr^{2+}$ ions per unit cell are at the centers of the double six-rings (site I), filling that position. The remaining 15 $Sr^{2+}$ ions and 17 $K^+$ ions fill site II in the supercage. These $Sr^{2+}$ and $K^+$ ions are recessed ca $0.45{\AA}\;and\;1.06{\AA}$ into the supercage, respectively, from the plane of three oxygens to which each is bound. ($Sr-O=2.45(1){\AA}\;and\;K-O=2.64(1){\AA}$) Eight $K^+$ ons occupy site III'($K-O=3.09(7){\AA}\;and\;3.11(10){\AA}$) and the remaining five $K^+$ ions occupy another site III'($K-O=2.88(7){\AA}\;and\;2.76(7){\AA}$). In $Sr_{8.5}Tl_{75}-X,\;Sr^{2+}\;and\;Tl^+$ ions also occupy five different crystallographic sites. About 8.5 $Sr^{2+}$ ions are at site I. Fifteen $Tl^+$ ions are at site I' in the sodalite cavities on threefold axes opposite double six-rings: each is $1.68{\AA}$ from the plane of its three oxygens ($T1-O=2.70(2){\AA}$). Together these fill the double six-rings. Another 32 $Tl^+$ ions fill site II opposite single six-rings in the supercage, each being $1.48{\AA}$ from the plane of three oxygens ($T1-O=2.70(1){\AA}$). About 18 $Tl^+$ ions occupy site III in the supercage ($T1-O=2.86(2){\AA}$), and the remaining 10 are found at site III' in the supercage ($T1-O=2.96(4){\AA}$).

  • PDF

Three Crystal Structures of Dehydrated Partially $Co^{2+}-Exchanged$ Zeolite A Treated with Potassium Vapor (부분적으로 코발트 이온으로 치환한 제올라이트 A를 진공 탈수한 후 칼륨 증기로 반응시킨 3개의 결정구조)

  • Jeong Mi Suk;Jang Se Bok
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Three crystal structures of dehydrated partially $Co^{2+}-exchanged$ zeolite A treated with 0.6 Torr of K at $300^{\circ}C$ (for 12 hrs, 6 hrs, and 2 hrs) vapor have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1)$^{\circ}C(a=12.181(1)\;{\AA},\;a=12.184(1)\;{\AA},\;and\;a=12.215(1)\;{\AA})\;respectively)$. Their structures were refined to the final error indices, R(weight) of 0.090 with 10 reflections, 0.091 with 82 reflections, and 0.090 with 80 reflections, respectively, for which $1>\sigma(I)$. In each structure, all four $Co^{2+}$ and four $Na^+$ ions to be reduced by K atoms. The cobalt and sodium atoms produced are no longer found in the zeolite. K species are found at five different crystallographic sites: three $K^+$ ions lie at the planes of 8-rings, filling that position, ca. 11.5 K^+$ ions lie on threefold axes, ca. 4.0 in the large cavity and ca. 4.0 in the sodalite cavity, and ca. 0.5 $K^+$ ion is found near a 4-ring. ca. three $K^0$ atoms are found deep into the large cavity on threefold axes. In these structures, crystallographic results show that cationic tetrahedral $K_4$ (and/or triangular $K_3$) clusters have formed in the sodalites of zeolite A. The $K_4$ and/or $K_3$ clusters coordinate trigonally to three oxygens of a six-oxygen ring. The partially reduced ions of these clusters interact primarily with oxygen atoms of the zeolite structure rather than with each other. ca. 14.5K species are found per unit cell, more than the twelve $K^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of $K^0$ has occurred. The three $K^0$ atoms in the large cavity are closely associated with three out of four $K^+$ ions in the large cavity to form $K_7^{4+}$ clusters. The $K_7^{4+}$ cluster not interacts primarily with framework oxygens.