• 제목/요약/키워드: X-ray photoelectron Spectroscopy

검색결과 1,382건 처리시간 0.032초

Application of X-ray photoelectron spectroscopy (XPS) in ionic liquids

  • 박주연;서초현;서성용;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.117-117
    • /
    • 2015
  • Availability of X-ray photoelectron spectroscopy (XPS) for the identification of ionic liquids (ILs) was tested. Commercially available ionic liquids (1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM] $BF_4$), (1-butyl-3-methyl imidazolium trifluoromethanesulfonate ([BMIM] OTf), (1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM] $PF_6$), 1-hexyl-3-imidazolium hexafluorophosphate ([HMIM] $PF_6$), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] $Tf_2N$) were qualitatively and semi-quantitatively analyzed with XPS. In order to confirm whether the results of XPS were correct, conventional method such as a nuclear magnetic resonance (NMR) was performed. After the XPS results were convinced by NMR, we synthesized ILs (1-(4-sulfonic acid) butyl-3-butylimidazolium trifluoromethanesulfonate ([SBBIM] OTf), 1-(4-sulfonic acid) propyl-3-methylimidazolium trifluoromethanesulfonate ([SPMIM] OTf), and 1-(4-sulfonic acid) propyl-3-butylimidazolium trifluoromethanesulfonate ([SPBIM] OTf) and analyzed it with XPS and NMR as well. It was successful the usage of XPS to analyze ILs without any purification processes.

  • PDF

Polishing Mechanism of TEOS-CMP with High-temperature Slurry by Surface Analysis

  • Kim, Nam-Hoon;Seo, Yong-Jin;Ko, Pil-Ju;Lee, Woo-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.164-168
    • /
    • 2005
  • Effects of high-temperature slurry were investigated on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries by the surface analysis of X-ray photoelectron spectroscopy (XPS). The pH showed a slight tendency to decrease with increasing slurry temperature, which means that the hydroxyl $(OH^-)$ groups increased in slurry as the slurry temperature increased and then they diffused into the TEOS film. The surface of TEOS film became hydro-carbonated by the diffused hydroxyl groups. The hydro-carbonated surface of TEOS film could be removed more easily. Consequently, the removal rate of TEOS film improved dramatically with increasing slurry temperature.

화학반응속도가 Cu CMP에 미치는 영향 (The effect of chemical kinetics of slurry components on Cu CMP)

  • 정원덕;장원문;박성민;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.372-373
    • /
    • 2006
  • Chemical kinetics affects Cu CMP results (removal rate, Non uniformity etc.) Because Cu is removed by chemical action. Key factors in chemical kinetics are process temperature and concentration of slurry components. In this study, Hydrogen peroxide and citric acid were selected as a oxidant and a complexing agent and Slurry were made by mixing this components. In order to study effects of Chemical Kinetics, X-ray photoelectron spectroscopy (XPS) were performed on Cu sample after etching test as concentration of citric acid and slurry temperature. Finally Cu CMP was performed as same conditions.

  • PDF

Materials Stabilized Liquid Crystal Molecules on Chemically Modulated Polystyrene Surface Using Various Ion Beam Exposure Time

  • Han, Jeong-Min;Hwang, Hyun-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.285-287
    • /
    • 2010
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure times. Transparent PS was replaced with conventional polyimide material. As a non-contact process, the IB bombardment process induced LC orientation parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time. Using this analysis, the optimal IB bombardment condition was determined at an IB exposure time of up to 15 seconds. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property.

Surface Analysis of Papers Treated with N-chloro-polyacrylamide Using X-ray Photoelectron Spectroscopy: Mechanism of Wet Strength Development

  • Chen Shaoping;Wu Zonghua;Tanaka Hiroo
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Pre-symposium of the 10th ISWPC Recent Advances in Paper Science and Technology
    • /
    • pp.276-281
    • /
    • 1999
  • The surfaces of sheets added with N-chloro-polyacrylamide (N-Cl-PAM) are analyzed using X-ray photoelectron spectroscopy (XPS) to clarify the chemical bonding involved in the paper strength development induced by N-Cl-PAM. The comparison of the observed N1s chemical shift of the sheet with those of the paper strength additives and the model compound, 1-butyryl-3-propyl urea, illustrated the presence of covalent bonds of alkyl acyl urea and urethane on the fiber surfaces. Thus the formation of the covalent bonds by N-Cl-PAM themselves and by N-Cl-PAM with cellulose and hemicellulose may be an explanation for much higher effectiveness of N-Cl-PAM on the improvement of wet strength of paper than A-PAM.

Magnetic and structural properties of ultrathin magnetic films: Ni/Pt(111)

  • Nahm, T.U.;Oh, S.J.
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.17-20
    • /
    • 2003
  • We have studied magnetic and structural properties of ultrathin Ni films grown on PI(lII) surface using in situ surface magneto-optic Kerr effect and X-ray photoelectron spectroscopy. Perpendicular magnetic anisotropy was absent, and longitudinal Kerr signal was only detectable for Ni films thicker than 6 monolayers. Enhancement in longitudinal Kerr signal by 30% was achieved by post-annealing at temperatures below 800K, but upon annealing at 820K, surface alloy was formed. By using core-level binding-energy shifts, the composition was determined to be Ni 70 at. %.

The study of oxygen molecules on Pt (111) surface with high resolution x-ray photoemission spectroscopy

  • Kim, Yong-Su;Bostwick, Aaron;Rotenberg, Eli;Ross, Philip N.;Hong, Soon-Cheol;Mun, Bong-Jin Simon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.61-61
    • /
    • 2010
  • By using high resolution x-ray photoelectron spectroscopy, we show that inelastic scattering of photoelectron at low temperature (30K~50K) generates two kinds of oxygen species on Pt (111) surface. Intense synchrotron radiation source dissociates oxygen molecules into chemisorbed atomic oxygen and induces the formation of PtO on surface. Estimated coverage of dissociated atomic oxygen is 0.5 ML, suggesting possible formation of p($2{\times}1$) surface structure, while PtO coverage shows saturation coverage of 0.5 ML. Molecular oxygen dosed at 30 K undergoes thermally activated transition from physisorbed to chemisorbed state at around 40K.

  • PDF

Role of Surfaces and Their Analysis in Photovoltaics

  • Opila, Robert L.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2011
  • Surface science is intrinsically related to the performance of solar cells. In solar cells the generation and collection of charge carriers determines their efficiency. Effective transport of charge carriers across interfaces and minimization of their recombination at surfaces and interfaces is of utmost importance. Thus, the chemistry at the surfaces and interfaces of these devices must be determined, and related to their performance. In this talk we will discuss the role of two important interfaces, First, the role of surface passivation is very important in limiting the rate of carrier of recombination. Here we will combine x-ray photoelectron spectroscopy of the surface of a Si device with electrical measurements to ascertain what factors determine the quality of a solar cell passivation. In addition, the quality of the heterojunction interface in a ZnSe/CdTe solar cell affects the output voltage of this device. X-ray photoelectron spectroscopy gives some insight into the composition of the interface, while ultraviolet photoemission yields the relative energy of the two materials' valence bands at the junction, which controls the open circuit voltage of the solar cell. The relative energies of ZnSe and CdTe at the interface is directly affected by the material quality of the interface through processing.

  • PDF

광전자 분광법으로 분석한 스테인레스 강 304의 산화 표면 (The Oxidized Surface of Stainless Steel 304 Analyzed with X-ray Photoelectron Spectroscopy)

  • 이경철;함경희;안운선
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.144-150
    • /
    • 1991
  • The stainless steel 304 oxidized at $70^{\circ}C$ in 2.5M CrO3/5.0M H2SO4 solution and at $200^{\circ}C$ , $300^{\circ}C$, and $400^{\circ}C$ in the air are analyzed with X-ray Photoelectron Spectroscopy (XPS) to obtain depth composition profile of the surface region. It is confirmed that the surface region has a quite different composition from that of the bulk. This is due to a difference in the outward diffusion rates of the oxidized species in the surface region. The order of diffusion rates is Fe > Cr > Ni in the experimental temperature range. In spite of the inferior rate of diffusion, Cr is enriched in the surface when it is oxidized in the CrO3/H2SO4 solution. This is due to preferential dissolution of oxidized Fe.

  • PDF

Changes in the Surface Characteristics of Gas-atomized Pure Aluminum Powder during Vacuum Degassing

  • Yamasaki, Michiaki;Kawamura, Yoshihito
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1039-1040
    • /
    • 2006
  • Vacuum degassing is essential in the preparation of RS P/M aluminum alloys to remove adsorbates and for the decomposition of hydrated-$Al_{2}O_3$ on the powder surface. Changes in the surface characteristics during vacuum degassing were investigated by X-ray photoelectron spectroscopy and temperature-programmed desorption measurement. Hydrated-$Al_{2}O_3$ decomposition to crystalline-$Al_{2}O_3$ and hydrogen desorption on the surface of argon gas-atomized aluminum powder occurred at 623 K and 725 K, respectively. This temperature difference suggests that the reaction converting hydrated-$Al_{2}O_3$ to crystalline-$Al_{2}O_3$ during vacuum degassing should be divided into the two reactions $"2Al+Al_{2}O_3{\cdot}3H_2O\;2Al_{2}O_3+6H_{surf}"and"6H_{surf}3H_2"$.

  • PDF