• Title/Summary/Keyword: X-ray microscopy

Search Result 3,233, Processing Time 0.031 seconds

Effects of Codoping with Fluorine on the Properties of ZnO Thin Films

  • Heo, Young-Woo;Norton, D.P.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.738-742
    • /
    • 2006
  • We report on the effects of co-doping with fluorine on properties of ZnO thin films grown by pulsed-laser deposition. The transport characteristics of Ag-F and Li-F codoped ZnO films were determined by Hall-effect measurements at room temperature. Ag-F codoped ZnO films showed n-type semiconducting behaviors. An ambiguous carrier type was observed in Li-F codoped ZnO films grown at a temperature of 500$^{\circ}C$ with the oxygen pressures of 20 and 200 mTorr. The qualities of the codoped ZnO films were studied by X-ray diffraction, atomic force microscopy, X-ray photoemission spectroscopy, and photoluminescence.

Characteristics of Domestic Clay Minerals (국내 점토광물의 특성연구)

  • Lim, Eung-Keuk;Park, Soon-Ja;Chung, Su-Jin;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 1980
  • Mineral identifications on halloysite in Hadong-Sancheong area and the halloysite bearing clay ii Yeoju, Yesan and Hampyeong-Muan area are carried out by the method of X-ray diffraction, electron microscopy and DTA. Chemical composition of the above minerals are analyzed by means of X-ray-fluorescence. Refractoriness are also measured by refractoriness tester. A standard diagram for quantitative analysis of halloysite is given.

  • PDF

A Study on Property of Microstructuree for Ba System of Perovskite Structure (페로브스카이형 Ba계열의 미세구조 특성)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.4
    • /
    • pp.185-189
    • /
    • 2011
  • To assess the prevalence of various radiological reduction methods for childhood intussusception in training hospitals by means of a nationwide phone survey, and to demonstrate recent trends in this area by comparing the findings with those obtained in a survey conducted. $BaTiO_3$ system was prepared by using fabrication of classical conditioning ceramics. Polycrystalline and surface structure characteristics of the specimens were measured by X-ray diffraction, SEM(Scanning Electron Microscopy) and EDAX (Energy Dispersive Spectrometer), respectively.

  • PDF

Aluminum Oxide Nano-Rings Synthesized by Electrospinning Techniques

  • Jo, Jun-Mo;Park, Ju-Yeon;Go, Seong-Wi;Kim, Don;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.102-102
    • /
    • 2010
  • One or two-dimensional nanostructures such as nanowires or nanomats have been widely uses as building blocks for nanoscale electronic devices. Nanofiber is one of sub-category of nano structures, it is easy to make nano-sized fiber by electrospinning technique. Nanofiber has large surface area as compared with their volume, it could be widely applied to many areas easily. Electrospinning technique is easy to control their structures and morphology safely and cost-effectively. We made nano-rings as a model of one dimensional nanostructures by electrospinning technique. To our knowledge, there were no reports on the preparation and investigation of alumina nano-rings by electrospinning technique. In this study, aluminum oxide nano-rings were produced after electospinning and calcination. The synthesized aluminum oxide nano-rings were characterized by scanning electron microscopy (SEM) to identify the morphology and the diameter of the ring, X-ray diffraction (XRD) to verify the crystallinity of the aluminum oxide, and X-ray photoelectron spectroscopy (XPS) for investigation of the chemical nature of the synthesized nano-rings.

  • PDF

Effect of anodic potentials for fabricating co-doped TiO2 on the photocatalytic activity

  • Lee, Seunghyun;Han, Jae Ho;Oh, Han-Jun;Chi, Choong-Soo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.295-295
    • /
    • 2012
  • The $TiO_2$ films were prepared in the $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages, to compare the photocatalytic performances of titania for purification of waste water. The microstructure was characterized by a Field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Chemical bonding states and co-doped elements of F and N were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. From the result of diffuse reflectance absorption spectroscopy(DRS), it is indicated that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward visible light area, and the photocatalytic reaction of $TiO_2$ was improved by doping an appropriate contents of F and N.

  • PDF

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

Synthesis, Molecular Structure and Mesomorphic Phase Behavior of${\eta}^1$-Benzylideneaniline Palladium(II) Complexes

  • Yu, Yong Sik;Im, Jun Hwan;Han, Bong Hwan;Lee, Myeong Su;Choe, Mun Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1350-1360
    • /
    • 2001
  • The synthesis and characterization of very stable Pd(Ⅱ) η1-imine complexes of bis(3,4-dialkyloxybenzylidene-3', 4'-dialkyloxyaniline)dichloropalladium(Ⅱ) with alkyl chain of hexyl (8), octyl (9), decyl (10) and dodecyl (11) groups, a nd of bis(4-ethyloxybenzylidene-4'-ethyloxyaniline)dichloropalladium(Ⅱ) as a model complex are described. The molecular structure with twisted board-like geometry of the complex resulting from the coordination of Pd(Ⅱ) with η1-imine bonding was confirmed by X-ray crystallographic analysis of the model complex. In contrast to the imine ligands, all the complexes with an exception of 11 display a thermally stable monotropic smectic A mesophase without any decomposition of the complex. These results, characterized by a combination of differential scanning calorimetry, optical polarized microscopy, and powder X-ray scattering experiments, are discussed.

Local Structure and Magnetic Properties of Fe-Mn Nanocrystalline Alloys Fabricated by Mechanical Alloying Technique as a Function of Milling Time

  • Tarigan, Kontan;Yang, Dong Seok;Yu, Seong Cho
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • Structural and magnetic properties of $Fe_{50}Mn_{50}$ nanocrystalline alloys prepared by the mechanical alloying technique (using commercial Fe and Mn powders as the precursors) are studied as a function of milling time, 1 hr to 48 hrs. The nano-crystallite size and shape are examined by using scanning electron microscopy (SEM). The effect of milling time on structural characterization was investigated using X-ray diffractometer (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). Both XRD and EXAFS studies showed that the alloying process should be completed after 36 hrs milling. Concerning the magnetic behavior, the data obtained from superconducting quantum interference devices (SQUID) exhibited both magnetic saturation ($M_s$) and coercivity ($H_c$) depend strongly on the milling time, which are related to the changes in the crystallite size and magnetic dilution.

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

A surface chemical analysis strategy for the microstructural changes in a CuAgZrCr alloy cast under oxidation conditions

  • Ernesto G. Maffia;Mercedes Munoz;Pablo A. Fetsis;Carmen I. Cabello;Delia Gazzoli;Aldo A. Rubert
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • The aim of this work was to determine the behavior of alloy elements and compounds formed during solidification in the manufacturing process of the CuAgZrCr alloy under an oxidizing environment. Bulk and surface analysis techniques, such as Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Raman and X-ray diffraction (XRD) were used to characterize the phases obtained in the solidification process. In order to focus the analysis on the on grain boundary interface, partial removal of the matrix phase by acid attack was performed. The compositional differences obtained by SEM-EDX, Raman and XPS on post-manufacturing materials allowed us to conclude that the composition of grain boundaries of the alloy is directly influenced by the oxidizing environment of alloy manufacturing.