• Title/Summary/Keyword: X-ray microscope

Search Result 1,446, Processing Time 0.033 seconds

Fabrication of PLA/TiO2 nanofibers using melt-electro-spinning (용융전기방사를 이용한 PLA/TiO2 나노섬유의 개발)

  • Hwang, Ji-Young;Kim, Hui-Jin;Park, No-Hyung;Huh, Hoon;Park, Choon-Keun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.124-128
    • /
    • 2011
  • Electrospun webs have been widely investigated for applying to drug delivery system (DDS) because of their high specific surface area and high porosity. In this study, the composite webs of PLA (poly(lactic acid)) and $TiO_2$ were fabricated by melt-electro-spinning method for applying to drug delivery system. The morphologies of PLA/$TiO_2$, webs were observed using scanning electron microscope (SEM) and field emission transmission electron microscope (FE-TEM). The crystal structures of PLA/$TiO_2$ composite webs were confirmed by X-ray diffractometer (XRD).

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Development of Bi-system High-$T_c$ Superconductor by PJL Method (PJL 법에 의한 Bi계 고온 초전도체의 개발)

  • Jung, Jin-In;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.924-925
    • /
    • 1999
  • Bi-system high-$T_c$ superconductors with the nominal composition $(Bi_{0.7}Pb_{0.3})_2-Sr_{2}Ca_{2}Cu_{3}O_{x}$ have been prepared by PJL method. The critical temperature (offset temperature) of the sample annealed for 13 hours in air was 102K. And the results of X-ray diffraction(XRD) patterns, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) spectra analyses, it was found that PJL method is so effective to reduce the heat treatment period.

  • PDF

A Study on the Hydrogenation Properties of MmNi4.5Al0.5Zrx(X=0.0-0.2) Alloys Containing the Zr by Excess (Zr을 과잉 첨가한 MmNi4.5Al0.5Zrx(X=0.0-0.2) 합금의 수소화 반응특성에 대한 연구)

  • Na, Young-Sang;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.4 no.1
    • /
    • pp.31-39
    • /
    • 1993
  • In order to improve the hydrogen storage capacity and the activation property of the $MmNi_{4.5}Al_{0.5}$ alloy, the multiphase alloy system are prepared by adding the excess Zr in $MmNi_{4.5}Al_{0.5}$ alloy. It is estimated from the X-ray diffraction pattern and the energy dispersive X-ray analysis that the 2nd phases in $MmNi_{4.5}Al_{0.5}Zr_x$ alloys are $ZrNi_3$, ${\beta}$-Zr. Their morphology is also examined by the scanning electron microscope, and it shows the needle-like precipitation. As the Zr contents increase, the activation time and the plateau pressure decrease, sloping of the plateau pressure increase. Amount of the 2nd phases increase with Zr contents in $MmNi_44.5Al_{0.5}Zr_x$ alloys. The $MmNi_44.5Al_{0.5}Zr_{0.05}$ alloy, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage.

  • PDF

Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light

  • Oh, Won-Chun;Zhang, Feng-Jun;Meng, Ze-Da;Zhang, Kan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1128-1134
    • /
    • 2010
  • Nanocarbon supported Fe/$TiO_2$ composite catalysts were prepared using CNTs (carbon nanotubes) and $C_{60}$ (fullerene) as nanocarbon sources by a modified sol-gel method. The Fe/$TiO_2$-nanocarbon composites were characterized by the BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and UV-vis spectra. In comparison with non-nanocarbon doped Fe/$TiO_2$ composites, the nanocarbon supported Fe/$TiO_2$ composites had higher absorption ability with a larger specific surface area, and showed higher photocatalytic activity during the degradation of methylene blue (MB) under visible light. The reasons for the obvious increase of photocatalytic activity indicated that the photoactivity not only benefits from nanocarbon introduced, but also relates to the cooperative effect of the Fe as a dopant.

Effect of Microbial Treatment Methods on Biogrout (미생물 처리 방법이 바이오그라우트에 미치는 영향)

  • Kim, Daehyeon;Park, Kyungho;Kim, Hochul;Lee, Yonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.51-57
    • /
    • 2012
  • The purpose of study is to understand the possibility of biogrout of soil induced by bacteria. Microbial Calcium Carbonate Precipitation(MCP) has been analysed using the microorganism Bacillus Pasteurii. In order to understand the biogrout of soft ground treated with microbial calcium carbonate precipitation, four types of specimens(sterilization soil, non-sterilization soil, reaction solution and microorganism solution with pre-treatment mix and reaction solution and microorganism solution with post-treatment mix) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft ground specimens. On the basis of the preliminary results, it appears that microbial treatment methods using calcium carbonate precipitation may be possible to improve property of biogrout.

Self-Organized Synthesis and Mechanism of SnO2@Carbon Tube-Core Nanowire

  • Luo, Minting;Ma, Yong-Jun;Pei, Chonghua;Xing, Yujing;Wen, Lixia;Zhang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2535-2538
    • /
    • 2012
  • $SnO_2@carbon$ tube-core nanowire was synthesized via a facile self-organized method, which was in situ by one step via Chemical Vapor Deposition. The resulting composite was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The diameter of the single nanowire is between 5 nm and 60 nm, while the length would be several tens to hundreds of micrometers. Then X-ray diffraction pattern shows that the composition is amorphous carbon and tin dioxide. Transmission electron microscope images indicate that the nanowire consists of two parts, the outer carbon tube and the inner tin dioxide core. Meanwhile, the possible growth mechanism of $SnO_2@carbon$ tube-core nanowire is also discussed.

High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃ (650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

Evaluation of Biodurability of Korean Chrysotile withen The Lung of Rats (한국산 백석면의 랫드의 폐 내 변화 연구)

  • Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • Objectives: To evaluate the biodurability of Korean Chrysotile(KC), the changes in fibers numbers and changes in the element composition of fibers from the lung of Sprague-Dawley rats instilled KC(average size $4.74{\mu}m$, $59,043{\times}10^6$ fibers/mg) was estimated. Methods: Rats were administered 1 mg KC(low group) or 2 mg KC(high group) by a single intratracheal instillation. At each time point(5 days, 5 weeks, 10 weeks), the numbers of KC fibers and the changes of element composition(atomic %) of KC fibers from the lung of the rats were analyzed with transmission electron microscope equipped with energy dispersive X-ray spectrometer. Results: Over time, the number of fibers within the lungs of animals were reduced. The average length of the low and high group is significantly reduced from 5 days after administration. Over time, the fiber ratio of at least $5{\mu}m$ remaining in the lung tissue of the low concentration group was up but the high group was reduced. From day 5 after administration, the composition ratio(Mg) was significantly decreased in all groups. Conclusions: Size and composition of Korean Chrysotile in the lung tissue of rats was changed from 5 days.

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.