• Title/Summary/Keyword: X-ray method

Search Result 4,416, Processing Time 0.032 seconds

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

CNT-BASED FIELD EMISSION X-RAY SOURCE

  • Kim, Hyun Suk;Lee, Choong Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.433-433
    • /
    • 2016
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission. CNT yarns have demonstrated its potential as excellent field emitters. It was demonstrated that a small focal spot size was achieved by manipulating some electrical parameters, such as applied bias voltage at the mesh gate, and electrostatic focal lenses, geometrical parameters, such as axial distances of the anode, and the electrostatic focal lens from the cathode assembly, and the dimension of the opening of the electrostatic lens. Electrical-optics software was used to systematically investigate the behavior of the electron beam trajectory when the aforementioned variables were manipulated. The results of the experiment agree with the theoretical simulation results. Each variable has an individual effect on the electron beam focal spot size impinging on the target anode. An optimum condition of the parameters was obtained producing good quality of X-ray images. Also, MWCNT yarn was investigated for field emission characteristics and its contribution in the X-ray generation. The dry spinning method was used to fabricate MWCNT yarn from super MWCNTs, which was fabricated by MW-PECVD. The MWCNT yarn has a significant field emission capability in both diode and the triode X-ray generation structure compared to a MWCNT. The low-voltage-field emission of the MWCNT yarn can be attributed to the field enhancing effect of the yarn due to its shape and the contribution of the high-aspect-ratio nanotubes that protrude from the sides of the yarn. Observations of the use of filters on the development of X-ray images were also demonstrated. The amount of exposure time of the samples to the X-ray was also manipulated. The MWCNT yarn can be a good candidate for use in the low voltage field emission application of X-ray imaging.

  • PDF

Studios in Selected Grid Ratio of Objective Thickness on X-ray Exposure (X선촬영시(X線撮影時) 피사체(被寫體) 두께에 따른 격자비(格子比) 선정(選定)에 관한 연구(硏究))

  • Yoon, Chul-Ho;Chu, Sung-Shil;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 1982
  • When unattenuated x-ray radiation passes through the object it is transmitted and scattered from objectes and impinging on the film. During this process certain radiation is absorbed within the object and others transmitted in reduced scattering. The scattering radiation influence upon radiation image quality, confining x-ray beam which means scattering radiation produce increased fog on x-ray film image and as a consequence decrease contrast and less detail of the film there for the elimination of fog and for absorbing scattered radiation, the grid has been used between the object and the film in order to rid of scattering rays. Using grid is good method for the qualification of the better image as well as in using air gap technique. The grid is easy to manipulate and promote good efficiency which is defined by ICRU and JIS. It is the purpose to study for eliminating scattered radiation from the tissue equivalent acryl phantom using grid, we have studied and evaluated the grid permeability about the x-ray exposure, the selection of grid ratio according to phantom thickness, on x-ray exposure are performed as follows. 1. The penetrating ratio of primary x-ray is remarkably decreased by increasing of the grid ratio, but it is almost not influenced in KVP difference and phantom thickness. 2. The scattered radiation is proportionaly increased by thickness of the phantom, having nothing to do with grid ratios. 3. The relative between the penetration rate of primary and secondary x-ray is improved by increasing grid ratio, and decreased by phantom thickness, and slightly decreased by high tube voltage. 4. The grid of 5:1 and 10:1 ratio are adequate to the phantom of 10cm and 15cm thickness, respectively.

  • PDF

Improved X-ray Center Beam Alignment Evaluation Method (개선된 X선 중심선속정렬평가 측정법)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.827-832
    • /
    • 2020
  • X-ray equipment, which is frequently used in radiology and treatment, is the most common and most used equipment in clinical practice. Equipment must provide accurate information to patients through continuous quality control. In case of manual quality control measurement, reproducibility may be poor and there may be a problem with reliability of evaluation results. In this study, an automated program was developed and attempted to measure how much the central ray between the focus of the X-ray tube and the variable aperture of the diagnostic X-ray generator used in clinical practice coincides. As a result of the experiment, it succeeded in calculating the coordinates of the two center points, and the distance between the two points was calculated in pixels and applied to the judgment and the automatic judgment value for whether the center line coincidence is within the normal angle or the abnormal angle is presented. The results of this study are considered to be very helpful in the quality control of the X-ray apparatus.

Energy Spectrum Analysis between Single and Dual Energy Source X-ray Imaging for PCB Non-destructive Test (PCB 비파괴 검사에 있어서 단일 에너지 소스와 이중 에너지 소스의 영상비교를 위한 엑스선 스펙트럼 분석)

  • Kim, Myungsoo;Kim, Giyoon;Lee, Minju;Kang, Dong-uk;Lee, Daehee;Park, Kyeongjin;Kim, Yewon;Kim, Chankyu;Kim, Hyoungtaek;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB non-destructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

A Dynamically Segmented DCT Technique for Grid Artifact Suppression in X-ray Images (X-ray 영상에서 그리드 아티팩트 개선을 위한 동적 분할 기반 DCT 기법)

  • Kim, Hyunggue;Jung, Joongeun;Lee, Jihyun;Park, Joonhyuk;Seo, Jisu;Kim, Hojoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • The use of anti-scatter grids in radiographic imaging has the advantage of preventing the image distortion caused by scattered radiation. However, it carries the side effect of leaving artifacts in the X-ray image. In this paper, we propose a grid line suppression technique using discrete cosine transform(DCT). In X-ray images, the grid lines have different characteristics depending on the shape of the object and the area of the image. To solve this problem, we adopt the DCT transform based on a dynamic segmentation, and propose a filter transfer function for each individual segment. An algorithm for detecting the band of grid lines in frequency domain and a band stop filter(BSF) with a filter transfer function of a combination of Kaiser window and Butterworth filter have been proposed. To solve the blocking effects, we present a method to determine the pixel values using multiple structured images. The validity of the proposed theory has been evaluated from the experimental results using 140 X-ray images.

A Tuberculosis Detection Method Using Attention and Sparse R-CNN

  • Xu, Xuebin;Zhang, Jiada;Cheng, Xiaorui;Lu, Longbin;Zhao, Yuqing;Xu, Zongyu;Gu, Zhuangzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2131-2153
    • /
    • 2022
  • To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-ray TB classification network (CXTCNet) and the chest X-ray TB area detection network (CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray images, thereby excluding the influence of other lung diseases on the detection of TB areas. It can reduce false positives in the detection network and improve the accuracy of detection results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine it with DenseNet. This module enables the network to learn more spatial and channel features information about chest X-ray images, thereby improving network performance. CXTDNet is a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed learnable proposal boxes and learnable proposal features are using for classification and location. The predictions of the algorithm are output directly without non-maximal suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And experiments on this dataset showed that the accuracy of the diagnosis was comparable to that of radiologists. We hope that our proposed algorithm and established dataset will advance the field of TB detection.

X-Ray Fluorescence Analysis of $Ta_2O_5,\;Nb_2O_5$ and ZrO_2$ in Tin-Slag Samples using Simple Dilution Method (주석 슬랙중 $Ta_2O_5,\;Nb_2O_5$ZrO_2$의 단일희석법을 이용한 X-선 형광분석)

  • Young-Sang Kim;Hak Je Sung
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.293-301
    • /
    • 1984
  • -ray fluorescence analysis of $Ta_2O_5$, $Nb_2O_5$ and $ZrO_2$ in tin-slag samples using the simple dilution method was studied. The method is to correct mathematically the calibration curve to the linear line by the dilution. One synthesized standard having similar composition to the sample and tin slag samples were diluted with anhydrous $Li_2B_4O_7$ at the level of 1%, 2% and 3% of the sample content respectively. The diluted samples were fused at $1150^{\circ}C$ for 30 minutes and these glass beads were finely ground and pelletized. Measuring the X-ray intensities with these pellets, analytical results were calculated by the equation derived from J. Scherman's equation for the characteristic X-ray intensity of an element. Analytical results agreed with the reference values obtained by the standard calibration method within allowable error range and were reproducible.

  • PDF

Investigation of the Super-resolution Algorithm for the Prediction of Periodontal Disease in Dental X-ray Radiography (치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘 적용 가능성 연구)

  • Kim, Han-Na
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.153-158
    • /
    • 2021
  • X-ray image analysis is a very important field to improve the early diagnosis rate and prediction accuracy of periodontal disease. Research on the development and application of artificial intelligence-based algorithms to improve the quality of such dental X-ray images is being widely conducted worldwide. Thus, the aim of this study was to design a super-resolution algorithm for predicting periodontal disease and to evaluate its applicability in dental X-ray images. The super-resolution algorithm was constructed based on the convolution layer and ReLU, and an image obtained by up-sampling a low-resolution image by 2 times was used as an input data. Also, 1,500 dental X-ray data used for deep learning training were used. Quantitative evaluation of images used root mean square error and structural similarity, which are factors that can measure similarity through comparison of two images. In addition, the recently developed no-reference based natural image quality evaluator and blind/referenceless image spatial quality evaluator were additionally analyzed. According to the results, we confirmed that the average similarity and no-reference-based evaluation values were improved by 1.86 and 2.14 times, respectively, compared to the existing bicubic-based upsampling method when the proposed method was used. In conclusion, the super-resolution algorithm for predicting periodontal disease proved useful in dental X-ray images, and it is expected to be highly applicable in various fields in the future.

A Study on Image Resolution Increase According to Sequential Apply Detector Motion Method and Non-Blind Deconvolution for Nondestructive Inspection (비파괴검사를 위한 검출기 이동 방법과 논블라인드 디컨볼루션 순차 적용에 따른 이미지 해상도 증가 연구)

  • Soh, KyoungJae;Kim, ByungSoo;Uhm, Wonyoung;Lee, Deahee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.609-617
    • /
    • 2020
  • Non-destructive inspection using X-rays is used as a method to check the inside of products. In order to accurately inspect, a X-ray image requires a higher spatial resolution. However, the reduction in pixel size of the X-ray detector, which determines the spatial resolution, is time-consuming and expensive. In this regard, a DMM has been proposed to obtain an improved spatial resolution using the same X-ray detector. However, this has a limitation that the motion blur phenomenon, which is a decrease in spatial resolution. In this paper, motion blur was removed by applying Non-Blind Deconvolution to the DMM image, and the increase in spatial resolution was confirmed. DMM and Non-Blind Deconvolution were sequentially applied to X-ray images, confirming 62 % MTF value by an additional 29 % over 33 % of DMM only. In addition, SSIM and PSNR were compared to confirm the similarity to the 1/2 pixel detector image through 0.68 and 33.21 dB, respectively.