• Title/Summary/Keyword: X-ray dose

Search Result 940, Processing Time 0.026 seconds

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

- A Study on Safety of the Radiation Exposure Dose Optimization at Chest B-ray Examinations - (사업장 단체검진 시 흉부촬영의 방사선피폭 최적화 및 안전에 대한 고찰)

  • Rhim Jae Dong;Kang Kyong Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • The National Health Insurance Act, the Industrial Health Act and the School Health Act require chest radiography at least once a year. In chest radiographic examination, most group examinations use indirect X-ray primarily aiming at diagnosing diseases and enhancing people's health. This study purposed to minimize radiation exposure dose by comparing it between direct and indirect chest X-ray studies. According to the result of comparing and analyzing radiation exposure dose, the average incident dose and penetrating dose were 0.929μGy and 0.179μGy respectively in direct chest X-ray and 6.807μGy and 1.337μGy in indirect chest X-ray In order to minimize radiation exposure dose at direct and indirect chest X-ray, indirect X-ray should be excluded from group examination if possible. Moreover, it is necessary to control the quality of equipment (Q/A & Q/C) systematically and to avoid using unqualified equipment in order to reduce radiation exposure dose.

Doses of Pediatric and X-ray Examination Assistants according to Changes in Pediatric X-ray Exposure Conditions (소아 X선 촬영조건 변화에 따른 소아 및 촬영보조자 선량)

  • Beom-Jin Jang;Ha-Yun Nam;Hye-Min Shin;Dong-Min Yun;Seung-Kook Lee;In-Hwa Jang;Sungchul Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.409-415
    • /
    • 2023
  • Although pediatric X-ray examinations are continuously increasing, there are not many studies on the radiation exposure to children and X-ray examination assistants according to X-ray Exposure conditions. Accordingly, we measured the radiation exposure dose of pediatric and X-ray examination assistants according to the standard guidelines and clinical average X-ray Exposure conditions when X-ray examination 10-year-old children. The effective dose and organ dose to pediatric were measured using an Dose area production meter and Monte Carlo-based PCXMC program, and the exposure dose of X-ray examination assistants was measured using an ion-chamber. When performing abdominal supine AP projection, the effective dose to children was up to 2.38 times higher under clinical average X-ray Exposure conditions than the standard guidelines. In addition, during abdominal supine AP projection, the radiation exposure dose to the X-ray examination assistants was highest on the hands at 0.0148 ~ 0.0709 mSv, and exposure dose could be reduced by up to 35% when wearing protective gloves. In conclusion, because the X-ray Exposure conditions used in clinical are unnecessarily high, unnecessary medical radiation exposure could be reduced if appropriate X-ray Exposure conditions and the radiation field area were minimized and the assistant wore shielding gloves.

Measurements of X-Ray and Gamma Ray Dosse Rate by the Silicon P-N Junction Diode (Silicon P-N Junction Diode에 대한 X-Ray 및 Gamma-Ray 의 Dose Ratec 측정)

  • 정만영;김덕진
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.13-20
    • /
    • 1964
  • The measurements of X-ray and Gamma-ray Dose Rate have been successfully made by measuring the short circuit current of the Silicon P-N Junction Diode being irradiated. The short circuit current flows when a silicon P-N Junction Diode is irradiated by X-ray of Gammaray radiations due to photovoltaic effect. A brief analysis is given in order to verify the proportionality of a short circuit current to the Dose Rate. Using this method, measurements of X-ray Dose Rate were carried out in the range of 0.05-1600 r/m successfully. The calibration was made by comparing with Victoreen condenser r-meter. Some advantages in this Dose Rate meter over a condenser r-meter were found. One can measure a continous variation of X-ray Dose Rate with this rate meter at the control console of X-ray device.

  • PDF

Utilization-Focused Reduction of Radiation Exposure with XCP-DS FIT Sensor Holder by Measuring Dose of Dental X-ray Generator (구내 방사선발생기의 선량 분포측정을 통한 필름유지기구(XCP-DS FIT)의 피폭선량감소에 대한 유용성)

  • Lee, Kyung Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.465-471
    • /
    • 2012
  • In this study, three dimensional X-ray dose distribution from dental X-ray generator system was measured by ALOKA PDM-117 dosimeter. The X-ray dose distribution will be change with XCP-DS FIT in oral shot, because the distance between X-ray generator and the dosimeter. The X-ray dose change affects on patient exposure and radiograph image quality. Therefore, it is important to obtain relation between the X-ray dose and the distance. The X-ray dose at the central position was decreased with increasing the distance. Furthermore, the dose at the edge of the X-ray flux was increased with increasing the distance. The increased dose affects on the patient radiation exposure. The present results will provide for good dental radiograph image and reducing radiation over-exposure on patient.

The Measurement and Analysis by Free Space Scatter Dose Distribution of Diagnostic Radiology Mobile Examination Area (영상의학과 이동검사 영역의 공간선량 분포에 대한 측정 및 분석)

  • Kim, Sung-Kyu;Son, Sang-Hyuk
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • There are several reasons to take X-ray in case of inpatients. Some of them who cannot ambulate or have any risk if move are taken portable X-ray at their wards. Usually, in this case, many other people-patients unneeded X-ray test, family, hospital workers etc-are indirectly exposed to X-ray by scatter ray. For that reason I try to be aware of free space scatter dose accurately and make the point at issue of portable X-ray better in this study. kVp dose meter is used for efficiency management of portable X-ray equipment. Mobile X-ray equipment, ionization chamber, electrometer, solid water phantom are used for measuring of free space scatter dose. First of all the same surroundings condition is made as taken real portable X-ray, inquired amount of X-ray both chest AP and abdomen AP most frequently examined and measured scatter ray distribution of two tests individually changing distance. In the result of measuring horizontal distribution with condition of chest AP it is found that the mAs is decreased as law of distance reverse square but no showed mAs change according to direction. Vertical distribution showed the mAs slightly higher than horizontal distribution but it isnt found out statistical characteristic. In abdomen AP, compare with chest AP, free space scatter dose is as higher as five-hundred times and horizontal, vertical distribution are quite similar to chest AP in result. In portable X-ray test, in order to reduce the secondary exposure by free space scatter dose first, cut down unnecessary portable order the second, set up the specific area at individual ward for the test the third, when moving to a ward for the X-ray test prepare a portable shielding screen. The last, expose about 2m apart from patients if unable to do above three ways.

  • PDF

Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine (이동형 구내 방사선촬영기로 촬영한 치근단 방사선사진의 흡수선량 및 유효선량 평가)

  • Cho, Jeong-Yeon;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.149-156
    • /
    • 2007
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. Materials and Methods: 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. Results: On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Conclusion: Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines.

  • PDF

The reduction methods of operator's radiation dose for portable dental X-ray machines

  • Cho, Jeong-Yeon;Han, Won-Jeong
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.160-164
    • /
    • 2012
  • Objectives: This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Materials and Methods: Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. Results: The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. Conclusions: When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

A Study on Radition-Induced Current in Insulating Oil during X-ray Irradiation (방사선(放射線) 조사(照射) 중(中) 절연유(絶緣油)의 유기전류(誘起電流)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • This study was measured the radiation-induced current - X-ray dose, dose rate, X-ray quality, time, temperature, electric field characteristics and the dependence of gap length in insulating oil under of D.C. Voltage before, during and after X-ray irradiation. The obtained results can be summarized as following. 1. The radiation - induced current is more the dependence of X-ray quality (tube voltage) than quantity (tube current), the dependence of quantity is appeared at the high than low X-.ay tube voltage. 2. The dependence of dose rate is appeared at the more dose rate, and ${\triangle}\;=\;0.64{\sim}0.74$. 3. The higher temperature of insulating oil and X-ray tube voltage (X-ray quality) is increased, at the low electric field, the more radiation-induced current. 4. $G_{eq}-G_{o}(={\triangle}G)$ is increased at the low than high temperature, high than low X-ray quality. 5. The dependence of temperature is appeared before than during X-ray irradiation. 6. The RIC saturation region is appeared at the high than low insulating oil temperature during (1000 V/cm above) than before (4000 V/cm above) X-ray irradiation.

  • PDF

A Comparative Study on Output of Four Type Diagnostic X-ray Equipments (정류방식에 따른 진단용 X-선 장치의 출력비교)

  • Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.34-43
    • /
    • 1997
  • There are 4 types of equipment in diagnostic radiography. These are single phase, three phase, inverter type and condenser type X-ray generators. It is very confusing to make an adequate exposure factor and to know the usage of different type of X-ray generators. In this experiment, I explored a comparative study of outputs in 4 different type of X-ray units. I expect that this experiment could be helpful for manufacturer to make both the X-ray equipment better, In terms of Ideal exposure factors, thereby reducing the patient dose. Experimental results are as follow : 1) X-ray output The ratio of X-ray output of single, three phase and inverter type of X-ray generator was 1 : 1.6 : 2 without absorber and 1 : 2 : 2.6 with 20 mm aluminium absorber. 2) Beam quality The X-ray beam quality of single phase generator was proved to be softer than three phase and inverter type of generators by 0.4 mmAL and 0.55 mmAl HVL respectively. 3) Reproducibility Linearity of X-ray output Retroducibility of X-ray output met the regulation below CV 0.05 and linearity also met the regulation below 0.1 in 4 types of diagnostic X-ray generators. 4) The comparison of incident dose Three phase X-ray generator was 20% higher than two other X-ray generators in radiation dose to make same film density.

  • PDF