• 제목/요약/키워드: X-ray diffraction meter analysis

검색결과 13건 처리시간 0.029초

붕괴절토사면의 광물조성 특성 (Mineral Composition Properties of Collapsed Cut Slope)

  • 김진환;구호본;박미선;백영식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.731-734
    • /
    • 2005
  • Cut slopes are collapsed in Korea every year. Cut slope collapses cause a loss of lives and assets. Many researchers make clear collapse factor of cut lope. Fresh rock weathered through reaction undergroundwater and groundwater. During weathering process, weathered minerals are created. Weathered minerals are analysed by X-ray diffraction meter. X-ray diffraction meter make possible quantity assessment of degree of weathering and indicator of potential collapse possibilities. This paper discuss possibilities of cut slope dangerous with analysis of weathered minerals of cut slope.

  • PDF

단조공정별 소성응력분포의 X.R.D 분석에 관한 연구 (Analysis of Forging Plastic Stress by X.R.D and F.E.M)

  • 전승경;김수연;김준형;이상걸
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.395-398
    • /
    • 2006
  • Forging is applied for many industrial fields. Also, it is applied to hose nipple. Stress and metal analysis is finding method of forging possibility and we predict this possibility by finite element forging analysis. But there are also many manufacturing procedure after forging, and metal texture is varied by additional heat treatment or coating. So this research is focused on the measuring and analysis of plastic residual stress distribution at overall manufacturing procedure. From raw material to final product we measured real residual stress at each manufacturing procedure by X ray diffract meter, and simulated another procedure except forging by nonlinear finite element analysis. Also we showed how Zn-Ni coating is more contributable to metal strength than Zn coating. By this research we make final conclusion that process analysis must be observed from raw material to final manufacturing state for robust design.

  • PDF

Carbonation Behavior of Fly Ash with Circulating Fluidized Bed Combustion (CFBC)

  • Bae, Soon Jong;Lee, Ki Gang
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.154-158
    • /
    • 2015
  • This paper investigates the reaction rates of $CO_2$ that stores carbonation through comparing the carbonation behavior between $Ca(OH)_2$ and fly ash with circulating fluidized bed combustion (CFBC) containing a large amount of free CaO. Because fly ash with CFBC contains abundant free CaO, it cannot be used as a raw material for concrete admixtures; hence, its usage is limited. Thus, it has been buried until now. In order to consider its reuse, we conduct carbonation reactions and investigate its rates. X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA), and X-ray fluorescence (XRF) are conducted for the physical and chemical analyses of the raw materials. Furthermore, we use a PH meter and thermometer to verify the carbonization rates. We set the content of the fly ash of CFBC, $Ca(OH)_2$, $CO_2$ flow rate, and water to 100 ~ 400 g, 30 ~ 120 g, 700 cc/min, and 300 ~ 1200 g, respectively, based on the content of the free CaO determined through the TG/DTA analyses. As a result, the carbonization rate of the fly ash with CFBC is the same as that of $Ca(OH)_2$, and it tends to increase linearly. Based on these results, we investigate the carbonization behavior as a function of the free CaO content contained in the raw material.

MgO 증착률에 따른 PDP 보호막 물성 및 방전 특성 분석 (The Analysis of the Discharging Characteristics and MgO protective layer by MgO Evaporation Rates for High-Efficiency PDP)

  • 김용재;권상직
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.181-186
    • /
    • 2007
  • 본 연구에서는 플라즈마 디스플레이 패널의 방전 특성과 MgO 보호막 물성에 영향을 미치는 MgO 증착률에 대해 분석을 하였다. 물성 특성으로 결정 방향과 표면 거칠기 결정 구조 및 음극선 발광을 XRD (X-ray Diffraction), AFM (Atomic Force Microscopy), Mono-CL (Mono Cathode Luminescence analysis)등을 이용하여 측정하였고, 방전 특성으로는 방전개시전압과 방전 전류, 휘도를 진공 챔버와 오실로스코프 (TDS 540C), 전류 프로브 (TCP 312A), 휘도 색차계 (CS-100A)를 이용하여 측정하였다. 실험 결과 $5{\AA}/sec$의 증착률이 최적의 증착률임을 확인하였고, 또한 MgO의 증착률에 따라서 MgO 보호막의 물성특성이 변화하고 이에 의해서 전기적 광학적 특징이 영향을 받는 것을 확인하였다. 즉, 증착률 $5{\AA}/sec$을 기준으로 증착률이 증가할수록 (200) 결정 방향 및 음극선 발광의 밀도가 감소되고, 동작 전압은 증가하며 점차 효율이 나빠지는 경향을 보인다.

저온에서 (Ba,Sr)$TiO_3$ 박막의 UV를 이용한 RTP에 관한 연구 (Low temperature UV-assisted rapid thermal processing of (Ba,Sr)$TiO_3$ thin films)

  • 조광환;강종윤;윤석진;이영백
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.234-234
    • /
    • 2008
  • Chemically homogeneous $Ba_{0.6}Sr_{0.4}TiO_3$ (BST) sols were synthesized using barium acetate, strontium acetate, and titanium isoproxide as starting materials. BST thin films of thickness 340 nm were deposited on Pt/$TiO_2/SiO_2$/Si and alumina substrates using spin coating method. The technique used for the processing of these films was Ultraviolet (UV) sol-gel photoannealing, using phto-sensitivity precursor solutions and UV-assisted rapid thermal processing(UV-RTP). The crystallization behaviour of the BST sols and thin films was studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). Variation of permittivity and dielectric loss were measured in LCR-meter, model HP 4394A.

  • PDF

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • 대한화학회지
    • /
    • 제63권6호
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

나일론 66 나노섬유의 염색성에 관한 연구(1) -균염성 산성염료- (Study on Dyeing Properties of Nylon 66 Nano Fiber (1) -Levelling Type Acid Dyes-)

  • 이권선;이범수;박영환;김성동;김용민;오명준;정성훈
    • 한국염색가공학회지
    • /
    • 제16권4호
    • /
    • pp.1-9
    • /
    • 2004
  • In recent, development of nano fiber has been one of the most active subjects in the world. Nano fiber is defined as a ultra fine yarn with a diameter unit of $10-100\times10^{-9}meter$, which is possible to be produced by an electro-spinning technology. In this study, physical characteristics and dyeing properties of nylon 66 nano fiber were investigated. Nylon 66 nano fiber was dyed with levelling type acid dyes. X-ray diffraction method and DSC analysis were used for the measurement of the degree of crystallization. Analysis of amino end groups was also performed in order to examine a relationship between number of amino groups and its dyeing property as well as water absorption behavior. The maximum exhaustion % of dyes and dyeing rate under various dyeing conditions, such as dyeing temperature and pH in dye bath, along with build-up properties for 2 acid dyes were evaluated. It was found that the degree of crystallization of nano fiber was smaller than that of regular fiber, and amino end groups of nano fiber were less than regular fiber. Half dyeing time of nano fiber was shorter than regular fiber because of the bigger specific surface area. Effect of pH on exhaustion % was small in case of nano fiber. Exhaustion of nano fiber increased with higher concentration of dye.

Effect of Shape Magnetic Anisotropy of Amorphous Fe-B-P Nanoparticles on Permeability

  • Lee, Ji Eun;Tsedenbal, Bulgan;Koo, Bon Heun;Huh, Seok Hwan
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.589-594
    • /
    • 2020
  • Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry-, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.

Organo-Clay를 이용한 NR/MMT 나노복합체의 기계적 물성에 관한 연구 (A Study on the Mechanical Properties of Organo-clay Filled NR/MMT Nanocomposites)

  • 오우택;이은경;최세영
    • Elastomers and Composites
    • /
    • 제44권4호
    • /
    • pp.455-465
    • /
    • 2009
  • 본 연구에서는 층상실리케이트에 Octylamine(OA), Dodecylamine(DA), Dimethyldodecylamine(DDA), Octadecylamine(ODA)와 같은 아민류을 사용하여 Organo-montmorillonite(MMT)를 합성한 후 Natural Rubber(NR)와 혼합하여 NR/MMT 나노복합체를 제조하였다. Organo-MMT 및 NR/MMT 나노복합체의 층간거리는 XRD를 사용하여 측정하였으며 NR/MMT 나노복합체의 모폴로지는 SEM을 통하여 관찰하였다. Organo-MMT의 구조분석은 FT-IR을 사용하였다. NR/MMT 나노복합체의 표면 자유에너지, 가황특성, 인장강도, 모듈러스 및 경도는 Contact angle meter, ODR, UTM 및 경도계로 관찰하였다. FT-IR 구조분석으로 MMT 층간에 알킬암모늄 이온의 도입을 확인하였다. 스코치 시간과 적정 가황 시간은 Organo-MMT를 사용한 경우에 단축되었다. NR/DDA-MMT 나노복합체의 표면 자유에너지와 인장강도가 가장 컸다. NR/ODA-MMT 나노복합체의 경도는 가장 컸다.

염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성 (Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite)

  • 육정숙;신지훈;김영운
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.