• Title/Summary/Keyword: X-ray crystal diffraction

Search Result 1,552, Processing Time 0.032 seconds

Crystal Structures of $Cd_6-A$ Dehydrated at $750^{\circ}C$ and Dehydrated $Cd_6-A$ Reacted with Cs Vapor ($750^{\circ}C$ 에서 탈수한 $Cd_6-A$의 결정구조와 이 결정을 세슘 증기로 반응시킨 결정구조)

  • Se Bok Jang;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.191-198
    • /
    • 1993
  • The crystal structures of $Cd_{6-}A$ evacuated at $2{\times}10^{-6}$ torr and $750^{\circ}C$ (a = 12.204(1) $\AA$) and dehydrated $Cd_{6-}A$ reacted with 0.1 torr of Cs vapor at $250^{\circ}C$ for 12 hours (a = 12.279(1) $\AA$) have been determined by single crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C.$ Their structures were refined to final error indices, $R_1=$ 0.081 and $R_2=$ 0.091 with 151 reflections and $R_1=$ 0.095 and $R_2=$ 0.089 with 82 reflections, respectively, for which I > $3\sigma(I).$ In vacuum dehydrated $Cd_{6-}A$, six $Cd^{2+}$ ions occupy threefold-axis positions near 6-ring, recessed 0.460(3) $\AA$ into the sodalite cavity from the (111) plane at O(3) : Cd-O(3) = 2.18(2) $\AA$ and O(3)-Cd-O(3) = $115.7(4)^{\circ}.$ Upon treating it with 0.1 torr of Cs vapor at $250^{\circ}C$, all 6 $Cd^{2+}$ ions in dehydrated $Cd_{6-}A$ are reduced by Cs vapor and Cs species are found at 4 crystallographic sites : 3.0 $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry; ca. 9.0 Cs+ ions lie on the threefold axes of unit cell, ca. 7 in the large cavity and ca. 2 in the sodalite cavity; ca. 0.5 $Cs^+$ ion is found near a 4-ring. In this structure, ca. 12.5 Cs species are found per unit cell, more than the twelve $Cs^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of Cs0 has occurred. The occupancies observed are simply explained by two unit cell arrangements, $Cs_{12}-A$ and $Cs_{13}-A$. About 50% of unit cells may have two $Cs^+$ ions in sodalite unit near opposite 6-rings, six in the large cavity near 6-ring and one in the large cavity near a 4-ring. The remaining 50% of unit cells may have two Cs species in the sodalite unit which are closely associated with two out of 8 $Cs^+$ ions in the large cavity to form linear $(Cs_4)^{3+}$ clusters. These clusters lie on threefold axes and extend through the centers of sodalite units. In all unit cells, three $Cs^+$ ions fill equipoints of symmetry $D_{4h}$ at the centers of 8-rings.

  • PDF

Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition (($CO_2$ 분해시 $LiMn_2O_4$의 상변화)

  • Kwoen, Tae-Hwan;Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF

Studies on the Physical and Chemical Denatures of Cocoon Bave Sericin throughout Silk Filature Processes (제사과정 전후에서의 견사세리신의 물리화학적 성질변화에 관한 연구)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.1
    • /
    • pp.21-48
    • /
    • 1974
  • The studies were carried out to disclose the physical and chemical properties of sericin fraction obtained from silk cocoon shells and its characteristics of swelling and solubility. The following results were obtained. 1. The physical and chemical properties of sericin fraction. 1) In contrast to the easy water soluble sericin, the hard soluble sericin contains fewer amino acids include of polar side radical while the hard soluble amino acid sach as alanine and leucine were detected. 2) The easy soluble amino acids were found mainly on the outer part of the fibroin, but the hard soluble amino acids were located in the near parts to the fibroin. 3) The swelling and solubility of the sericin could be hardly assayed by the analysis of the amino acid composition, and could be considered to tee closely related to the compound of the sericin crystal and secondary structure. 4) The X-ray patterns of the cocoon filament were ring shape, but they disappeared by the degumming treatment. 5) The sericin of tussah silkworm (A. pernyi), showed stronger circular patterns in the meridian than the regular silkworm (Bombyx mori). 6) There was no pattern difference between Fraction A and B. 7) X-ray diffraction patterns of the Sericin 1, ll and 111 were similar except interference of 8.85A (side chain spacing). 8) The amino acids above 150 in molecular weight such as Cys. Tyr. Phe. His. and Arg. were not found quantitatively by the 60 minutes-hydrolysis (6N-HCI). 9) The X-ray Pattern of 4.6A had a tendency to disappear with hot-water, ether, and alcohol treatment. 10) The partial hydrolysis of sericin showed a cirucular interference (2A) on the meridian. 11) The sericin pellet after hydrolysis was considered to be peptides composed with specific amino acids. 12) The decomposing temperature of Sericin 111 was higher than that of Sericin I and II. 13) Thermogram of the inner portioned sericin of the cocoon shell had double endothermic peaks at 165$^{\circ}C$, and 245$^{\circ}C$, and its decomposing temperature was higher than that of other portioned sericin. 14) The infrared spectroscopic properties among sericin I, II, III and sericin extracted from each layer portion of the cocoon shell were similar. II. The characteristics of seriein swelling and solubility related with silk processing. 1) Fifteen minutes was required to dehydrate the free moisture of cocoon shells with centrifugal force controlled at 13${\times}$10$^4$ dyne/g at 3,000 R.P.M. B) It took 30 minutes for the sericin to show positive reaction with the Folin-Ciocaltue reagent at room temperature. 3) The measurable wave length of the visible radiation was 500-750m${\mu}$, and the highest absorbance was observed at the wave length of 650m${\mu}$. 4) The colorimetric analysis should be conducted at 650mu for low concentration (10$\mu\textrm{g}$/$m\ell$), and at 500m${\mu}$ for the higher concentration to obtain an exact analysis. 5) The absorbing curves of sericin and egg albumin at different wave lengths were similar, but the absorbance of the former was slightly higher than that of the latter. 6) The quantity of the sericin measured by the colorimetric analysis, turned out to be less than by the Kjeldahl method. 7) Both temperature and duration in the cocoon cooking process has much effect on the swelling and solubility of the cocoon shells, but the temperature was more influential than the duration of the treatment. 8) The factorial relation between the temperature and the duration of treatment of the cocoon cooking to check for siricin swelling and solubility showed that the treatment duration should be gradually increased to reach optimum swelling and solubility of sericin with low temperature(70$^{\circ}C$) . High temperature, however, showed more sharp increase. 9) The more increased temperature in the drying of fresh cocoons, the less the sericin swelling and solubility were obtained. 10) In a specific cooking duration, the heavier the cocoon shell is, the less the swelling and solubility were obtained. 11) It was considered that there are differences in swelling or solubility between the filaments of each cocoon layer. 12) Sericin swelling or solubility in the cocoon filament was decreased by the wax extraction.. 13) The ionic surface active agent accelerated the swelling and solubility of the sericin at the range of pH 6-7. 14) In the same conditions as above, the cation agent was absorbed into the sericin. 15) In case of the increase of Ca ang Mg in the reeling water, its pH value drifted toward the acidity. 16) A buffering action was observed between the sericin and the water hardness constituents in the reeling water. 17) The effect of calcium on the swelling and solubility of the sericin was more moderate than that of magnecium. 18) The solute of the water hardness constituents increased the electric conductivity in the reeling water.

  • PDF

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan;Kim, Hye-Jin;Kim, Ji-Eun;Park, Eun-Ju;Noh, Ji-Sun;Kang, Hyun-Jung;Shin, Seung-Ho;Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation (진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성)

  • Lee, Jeoung-Ju;Sung, Byeong-Hoon;Lee, Jong-Duk;Park, Chang-Young;Kim, Kun-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2009
  • $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

Comparative Assessment on Indicating Factor for Biomineralization by Bacillus Species (Bacillus종의 생광물화에 미치는 영향 인자의 비교 평가)

  • Seok, Hee-Jeong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2013
  • This study was conducted to comparatively assess quantitative indicating factor for biomineralization characterizing $CO_2$ mineralization on three type of minerals (i.e., $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$) in an aqueous solution amended with Bacillus pasteurii or indigenous microorganisms for a S landfill cover soil. For given three types of minerals, $NH_4{^+}$ (urease activity) was released at the highest of 88 mg/L for $MgCl_2$, then 85 mg/L for $CaCl_2$, and the lowest of 42 mg/L for $CaCl_2-MgCl_2$. $CO_2$ gas in the head space was completely removed after 12, 12, and 24 hr for $CaCl_2$, $MgCl_2$ and $CaCl_2-MgCl_2$, respectively. $Ca^{2+}$ concentration in $CaCl_2$ solution was the quickest and the greatest decreased 92% for 12 hr whereas that in $CaCl_2-MgCl_2$ solution was lower at 85% for 36 hr. $Mg^{2+}$ concentration in $MgCl_2$ was more efficiently decreased at 46% for 48 hr than that of $CaCl_2-MgCl_2$ solution of 38.5% for 72 hr. Regardless of types of minerals or their concentration, pH was changed from 5.5 to 9 by biomineralization being progressed. Microbial activity ($OD_{600}$) was also changed from 0 to 0.6. SEM images indicated that spheroidal and trapezoid shape crystal were formed, which were identified as of $CaCO_3$ (Calcite) and $MgCO_3$ (Magnesite) by X-ray diffraction. In the long run, $NH_4{^+}$ (urease activity), $CO_2$ gas, $OD_{600}$, pH, $Ca^{2+}$ and $Mg^{2+}$ would be suitable for reasonable indicating factor in order to assess the degree of biomineralization efficiency.

Growth of CdSe thin films using Hot Wall Epitaxy method and their photoelectrical characteristics (HWE방법에 의한 CdSe 박막 성장과 광전기적 특성)

  • Hong, K.J.;Lee, K.K.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Suh, S.S.;Jeong, J.W.;Jeong, K.A.;Shin, Y.J.;Jeong, T.S.;Kim, T.S.;Moon, J.D.;Kim, H.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.328-336
    • /
    • 1997
  • The CdSe thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). The source and substrate temperature are $600^{\circ}C$ and $430^{\circ}C$ respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. From Hall data, the mobility was increased in the temperature range 30K to 150K by impurity scattering and decreased in the temperature range 150k to 293k by the lattice scattering. In order to explore the applicability as a photoconductive cell, we measured the sensitivity(${\gamma}$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in Cu vapor compare with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of $1.39{\times}10^{7}$, the MAPD of 335mW, and the rise and decay time of 10ms and 9.5ms, respectively.

  • PDF

Corrosion Characteristics by CCPP Control in Simulated Distribution System (CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구)

  • Kim, Do-Hwan;Lee, Jae-In;Lee, Ji-Hyung;Han, Dong-Yueb;Kim, Dong-Youn;Hong, Soon-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1249-1256
    • /
    • 2005
  • This study was performed to investigate the efficiency of the corrosion prevention in the simulated distribution system using CCPP(Calcium Carbonate Precipitation Potential) as the anti-corrosive index by adjusting pH, total dissolved solids, alkalinity and calcium hardness in the water treatment pilot process. The materials of the simulated distribution system(SDS) were equiped with same materials of real field water distribution system. CCPP concentrations controlled by $Ca(OH)_2$, $CO_2$ gas and $Na_2CO_3$ in the simulated distribution system and uncontrolled by the chemicals in the general water distribution system were average 0.61 mg/L and -7.77 mg/L. The concentrations of heavy metals like Fe, Zn, Cu ions in effluent water of the simulated distribution system controlled with water quality were decreased rather than the general water distribution system uncontrolled with water quality. In simulated distribution system(SDS), corrosion prevention film formed by CCPP control was observed that scale was come into forming six months later and it was formed into density as time goes on. We were analyzed XRD(X-ray diffraction) for investigating component of crystal compounds and structure for galvanized steel pipe(15 mm). Finding on analysis, scale was compounded to $Zn_4CO_3(OH)_6{\cdot}H_2O$ (Zinc Carbonate Hydroxide Hydrate) after ten months late, and it was compounded on $CaCO_3$(Calcium Carbonate) and $ZnCO_3$(Smithsonite) after nineteen months later.