• 제목/요약/키워드: X-bracing shear wall

검색결과 6건 처리시간 0.019초

Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

  • Ghods, Saeedeh;Kheyroddin, Ali;Nazeryan, Meissam;Mirtaheri, Seyed Masoud;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.915-935
    • /
    • 2016
  • Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five RCS frames with different types of lateral restraint system. The main objective of this study is to investigate the forming of plastic hinges, distribution of stresses, ductility and stiffness of these models. The results of current research showed good performance of composite systems including concrete column-steel beam in combination with steel shear wall and bracing system, are very desirable. The results show that the linear stiffness of models with X bracing and steel shear wall increase remarkably and their ultimate strength increase about three times rather than other RCS frames.

스틸하우스 전단벽체의 내진성능평가 (Evaluation of Seismic Performance on Shear Walls in Steel House)

  • 이재석;이승은;홍건호;김원기
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.65-72
    • /
    • 2002
  • 최근의 건축물 내진 설계 추세에 맞추어, 박판의 냉간성형강으로 제작되는 스틸하우스 전단벽체의 내진 성능을 평가하였다. 시험체는 브레이싱의 종류에 따라 변수를 두었다. 반복가력의 결과로는 에너지소산 능력을 살펴보았는데, 브레이싱 부재로 형강을 사용한 시험체가 판재를 사용한 시험체 보다 우수하였다. 또한, 유사동적실험을 통해서는 면재를 사용한 전단벽체 보다. 스틸하우스 전단벽체 중 하나인 X-브레이싱 형태와 유사한 X2SPCH의 내진성능이 비교적 우수함이 판명되었다.

Evaluation of lateral stiffness of steel structures having different types of lateral load-resisting systems

  • Kabir Sadeghi;Krekar Kadir Nabi;Fatemeh Nouban
    • Advances in Computational Design
    • /
    • 제9권3호
    • /
    • pp.151-165
    • /
    • 2024
  • In this paper, the evaluation of the elastic lateral stiffness factor (ELSF) of steel frames for different lateral load-resisting systems (LLRSs) is presented. First, 720 steel structural frame models have been analyzed and designed using the equivalent lateral force method. Then by using pushover analysis method, all models have been analyzed, compared and evaluated. Finally, the effects of a number of influenced parameters such as different types of LLRSs, span length, number of stories, number of spans as well as story height of the buildings on the lateral stiffness are assessed and by applying regression analysis some useful equations were submitted. Based on the results obtained for steel frames having different LLRSs, compared to ordinary moment-resisting frames (OMRFs) as a base (having ELSF of 1), the normalized average ELSFs of K-eccentrically braced-frames (K-EBFs), V-, Z-, inverted V-, X-braced-frames, shear walls with thickness of 25 cm (SW25) and shear walls with thickness of 30 cm (SW30) are about 2.2, 6, 7, 9, 11, 95, 155, respectively. Among the braced-frames, X-braced-frames have the maximum ELSF, about 10 times more than OMRF, while OMRFs provide the minimum ELSFs among all LLRSs, and the frames supported by shear walls have ELSFs about 100 to 150 times more than OMRFs.

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

Effect of lateral structural systems of adjacent buildings on pounding force

  • Kheyroddin, Ali;Kioumarsi, Mahdi;Kioumarsi, Benyamin;Faraei, Aria
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.229-239
    • /
    • 2018
  • Under strong ground motion, pounding can be caused because of the different dynamic properties between two adjacent buildings. Using different structural systems in two adjacent structures makes a difference in the lateral stiffness and thus changes the pounding force between them. In this paper, the effect of the structural system of adjacent buildings on the amount of force applied by pounding effects has been investigated. Moment resisting frame systems (MRFs), lateral X-bracing system (LBS), shear wall system (SWS) and dual system (DS) have been investigated. Four different cases has been modelled using finite element (FE) method. The number of stories of the two adjacent buildings is different in each case: case 1 with 6 and 4 stories, case 2 with 9 and 6 stories, case 3 with 15 and 6 stories and case 4 with 10 and 10 stories. The structures have been modelled three-dimensionally. Non-linear time history analysis has been done on the structures using the finite element software SAP2000. In order to model pounding effects, the non-linear gap elements have been used.

경량합성벽체의 전단성능 및 압축내력 평가 (Evaluations of Shear performance and Compressive strength of Light-weight hybrid panel)

  • 이동혁;이상섭;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.33-43
    • /
    • 2005
  • 본 논문은 스틸스터드로 구성된 골조에 경량기포모르터를 타설 양생하여 제작한 경량합성벽체의 반복가력 전단실험에 의한 에너지 소산능력과 압축내력 실험을 통한 압축성능의 평가에 대한 연구이다. 경량기포모르터의 유무, 경량기포모르터의 비중(0.6, 0.8, 1.0, 1.2), 마감재(경량기포모르터, OSB, 석고보드) 및 브레이스의 유무, 벽체의 단위(1단위-$900mm{\times}2,400mm$, 2단위-$1,800mm{\times}2,400mm$)를 변수로 하여 실시하였던 경량합성벽체의 전단내력 평가 실험 가운데 반복 실험 결과를 동일 조건의 단조 실험과 비교하였다. 또한 기존 스틸하우스벽체와 경량합성벽체의 압축내력도 실험을 통해 조사하였다. 반복가력 실험결과, 단조가력 실험체의 거동과 약간의 차이를 보이고 있으며 이는 벽체에 채운 경량기포모르터의 비중에 따른 차이라고 생각된다. 압축내력 실험결과, 기존형 실험체에 비하여 경량기포모르터를 타설한 실험체의 최대내력은 2~2.5배, 초기강성은 2~3배 정도 증가하였다.