• Title/Summary/Keyword: X-brace

Search Result 38, Processing Time 0.023 seconds

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.

Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation

  • Liu, Yongjian;Xiong, Zhihua;Feng, Yuncheng;Jiang, Lei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.455-465
    • /
    • 2017
  • This paper presents a series of ultimate and fatigue experimental investigation on concrete-filled rectangular hollow section (CRHS) X joints with Perfobond Leister rib (PBR) under tension. A total of 15 specimens were fabricated, in which 12 specimens were tested under ultimate tension and 3 specimens were investigated in fatigue test. Different parameters including PBR stiffening, brace-to-chord ratio (${\beta}$) and inclined angle (${\theta}$) were considered in the test. Each joint was tested to failure under tension load. Obtained from test result, PBR was found to improve the tension strength and fatigue durability of CRHS joint substantially. Concrete dowel consisted by PBR and concrete inside the chord stiffened the joint, which leaded to a combination failure mode of punching shear and chord plastification of CRHS joint under tension. Finite element analysis validated the compound failure mode. Stress concentration on typical spot of CRHS joint was mitigated by PBR which was observed from fatigue test. Initial fatigue crack presented in CRHS joint with PBR also differentiated with the counterpart without PBR.

Seismic Retrofit and Seismic Performance Evaluation of Existing School Structures Using diagonal, x-shaped, chevron Braces (가새를 사용한 기존 학교건축물의 내진보강 및 내진성능평가)

  • Kim, Dong-Keon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • Occurrence of earthquakes have been increased all over the world and also, magnitude of earthquakes have been larger these days. Earthquake can be happened in Korea and is not a safe country any more. Many buildings are exposed at danger without any alternatives against earthquake in Korea. Among various kinds of buildings, school buildings are very important and urgent, because many students stays at school and young students have some difficulty to evacuate. Also, most existing school buildings in Korea were not designed considering earthquake resistant design codes. Thus, in this study, 3 types of braces were applied for seismic retrofits of existing school buildings using commercial structural analysis software and effective seismic retrofits were evaluated and discussed based on results by time history analysis.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Experiment of Friction-type Reinforcing Members for Upgrading Wind-Resistant Performance of Transmission Towers (송전철탑의 내풍성능 향상을 위한 마찰형 보강기구 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.884-892
    • /
    • 2006
  • A friction-type reinforcing member(FRM) is proposed for the purpose of upgrading wind resistant performance of a transmission tower and verified through cyclic loading tests. First, suitable install scheme of the FRM is investigated through numerical analysis. Main-post-reinforcing type and X-brace type installation schemes are examined, and numerical analysis shows that the former is more effective due to the vertical cantilever type behavior of the transmission tower. Based on this result, two types of the FRM's, dissipating energy in slotted belted connections, are proposed. The one utilizes the relative displacement between the FRM and the main post, and the other utilizes that between the separated angles consisting of the FRM as a slip deformation of the slotted bolted connection. Proposed FRM's are installed on each main post of the 1/2 scale substructure models of an actual transmission tower body. From cyclic loading tests, the latter type of the proposed FRM's dissipates energy more effectively and its slip load is controlled by applied torque well, and shares considerable amount of the axial force in the main post.

  • PDF

The review on the need for early screening of scoliosis (척추측만증 조기검진의 필요성)

  • Gong, Sang-Eun;Oh, Min-Seok
    • Journal of Haehwa Medicine
    • /
    • v.20 no.1
    • /
    • pp.137-142
    • /
    • 2011
  • Objective : The purpose of this study was to review on the need for early screening of scoliosis. Methods : We have researched and analyzed theories and literatures of scoliosis screening program. Result : The following results were obtained in this study. 1. Scoliosis screening should be carried out to improve middle and high school students's health and learning abilities. 2. The methods are the forward bending test, Moire test and X-Ray. 3. After the examination held by differentiating the degree of scoliosis, surgery or brace treatment for students should be carried out. 4. After the examination, appropriate acupuncture, exercise therapy and orthodontic treatment for students should be carried out. 5. Spinal health courses for young people should be held regularly to equip and encourage a healthy body and healthy mind and contribute to improve the learning efficiency. Conclusion : Scoliosis screening and early detection should be done in the Daejeon city middle school or high school students, and appropriate treatment should be performed as soon as possible.

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.571-587
    • /
    • 2020
  • In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.

Seismic Resistance Response of Railway Station Building Retrofitted by Metallic Dampers (강재댐퍼를 적용한 역사 건물의 내진 응답)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • The purpose of this research is a seismic capacity evaluation and strengthening of existing railway station buildings, which were constructed before the seismic design code activated. The seismic capacity of 2nd story RC station building is evaluated by using nonlinear time-history analysis. Analysis results are checked by story drift ratio and story shear, which are described in design code. As a result, the story shears are exceeding the base shear of the design code, the appropriate seismic strengthening methods are needed. To improve the seismic capacity, metallic dampers are used. Evaluation parameters are metallic damper shape and damper installation methods. Dampers are installed in four places in X and Y directions of station buildings. By reviewing of time-history analysis results, the metallic damper, which is installed inverted K-brace type, shows a better seismic performance than other damper shape and installation methods.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.