• Title/Summary/Keyword: X-Ray scattering

Search Result 455, Processing Time 0.034 seconds

Effects of Boron Doping on the Structural and Optical Properties of CdS Thin Films (보론 도핑된 CdS 박막의 구조적 및 광학적 특성)

  • Lee, Jae-Hyeong;Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1032-1037
    • /
    • 2003
  • Boron-doped CdS thin films were chemically deposited onto glass substrates. X-ray diffraction (XRD), photoluminescence (PL), and Raman techniques were used to evaluate the quality of B-doped CdS films. XRD results have confirmed that B-doped CdS films has a hexagonal structure with a preferential orientation of the (002) plane. The PL spectra for all samples consists of two prominent broad bands around 2.3 eV (green emission) and 1.6 eV (red emission) and the higher doping concentrations gradually decreased the green emission and red emission. Raman analysis has shown that undoped films have structure superior to those of B-doped CdS films. Boron doping into CdS films improved the optical transmittance and increased the optical band gap.

Model Simulations for the Dust-Scattered Far-Ultraviolet in the Orion-Eridanus Superbubble

  • Jo, Young-Soo;Min, Kyoung-Wook;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We present the results of dust scattering simulations carried out for the Orion Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated as well as the distance and thickness of the dust layers. The results are: 0.39-0.45 for the albedo and 0.25-0.65 for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be -110 pc and the thickness ranged from -130 at the core to -50 pc at the boundary for the region of the present interest, implying that the dust cloud is located in front of the Superbubble. The simulation result also indicates that a thin (-10 pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of -70-90 pc.

  • PDF

Effect of Rapid Thermal Annealing on the Ti doped In2O3 Films Grown by Linear Facing Target Sputtering

  • Seo, Ki-Won;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.342.1-342.1
    • /
    • 2014
  • The electrical, optical and structural properties of Ti doped $In_2O_3$ (TIO) ohmic contacts to p-type GaN were investigated using linear facing target sputtering (LFTS) system. Sheet resistance and resistivity of TIO films are decreased with increasing rapid thermal annealing (RTA) temperature. Although the $400^{\circ}C$ and $500^{\circ}C$ annealed samples showed rectifying behavior, the $600^{\circ}C$ and $700^{\circ}C$ annealed samples showed linear I-V characteristics indicative of the formation of an ohmic contact between TIO and p-GaN. The annealing of the contact at $700^{\circ}C$ resulted in the lowest specific contact resistivity of $9.5{\times}10^{-4}{\Omega}cm^2$. Based on XPS depth profiling and synchrotron X-ray scattering analysis, we suggested a possible mechanism to explain the annealing dependence of the properties of TIO layer on rapid thermal annealing temperature.

  • PDF

Nanostructural Deformation Analysis of Tricalcium Silicate Paste by Atomic Pair Distribution Function (원자짝 분포 함수를 이용한 칼슘 실리케이트 경화체의 나노 구조 변형 거동 해석)

  • Bae, Sung-Chul;Chang, Yoo-Hyun;Jee, Hyeon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.94-95
    • /
    • 2016
  • Calcium Silicate Hydrate (C-S-H), which takes up most of the hydration products of Portland Cement (PC), has the greatest impact on the mechanical behavior and strength development of concrete. The exact mechanism of its deformation, however, has not yet been elucidated. The present study aims to demonstrate the mechanism of nano-deformation behavior of C-S-H in tricalcium silicate paste under compressive loading, unloading and reloading by interpreting atomic pair distribution function (PDF) based on synchrotron X-ray scattering. The strain of the tricalcium silicate paste for a short-range of 0 ~ 20 Å under compressive load exhibited two stages, I) nano-packing of interlayer of C-S-H and II) micro-packing of C-S-H globules, whereas the deformation for a long-range order of 20 ~ 40 Å was similar to that of a calcium hydroxide phase measured by Bragg peak shift. Moreover, the residual strains due to the plastic deformation of C-S-H was clearly observed.

  • PDF

The Influence of Surface Modification of Gold Nanoparticles Supported on TiO2 in the Catalytic Activity of CO Oxidation

  • Park, Da-Hee;Reddy, A.S.;Eah, Sang-Kee;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.213-213
    • /
    • 2011
  • Gold catalysts supported on TiO2 have shown a unique catalytic behavior on CO oxidation, depending on surface effects. Particle size has an influence on the surface activity. To make monodisperse Au nanoparticles, organic capping ligands, such as alkylthiols, were used by a "greener" synthesis method [1,2] and Au nanoparticles were deposited on TiO2. However, organic capping ligands must be removed for high catalytic activities by the Au nanoparticles without changing the Au size [3]. We used UV ozone treatment to decompose thiol ligands. The samples have been characterized by X-ray photoelectron spectroscopy to examine the surface modification by UV ozone treatment. We show the size distribution of the gold nanoparticles by light scattering analysis and transmission electron microscopy. Au/TiO2 have been prepared using the wetness impregnation method. The catalytic performance of CO oxidation over Au supported on TiO2 under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) were tested. The results show that the catalytic activity depends on particle size and the time of UV ozone exposure, which suggests the role of sulfur bonding in determining the catalytic activity of Au/TiO2 catalysts.

  • PDF

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

AEM on Growth Mechanism of Synthesized Graphene on Ni Catalyst

  • Park, Min-Ho;Lee, Jae-Uk;Bae, Ji-Hwan;Song, Gwan-U;Kim, Tae-Hun;Yang, Cheol-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.579-579
    • /
    • 2012
  • Graphene has recently been a subject of much interest as a potential platform for future nanodevices such as flexible thin-film transistors, touch panels, and solar cells. And chemical vapor deposition (CVD) and related surface segregation techniques are a potentially scalable approach to synthesizing graphite films on a variety of metal substrates. The structural properties of such films have been studied by a number of methods, including Raman scattering, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An understanding of the structural quality and thickness of the graphite films is of paramount importance both in improving growth procedures and understanding the resulting films' electronic properties. In this study, we synthesized the few-layered grapheneunder optimized condition to figure out the growth mechanism seen in CVD-grown graphenee by using various electron microscope. Especially, we observed directly film thickness, quality, nucleation site, and uniformity of grpahene by using AEM. The details will be discussed in my presentation.

  • PDF

Synthesis and Physical Properties of Liquid-Crystalline Polyurethanes (液晶性 Polyurethane의 合成과 物性에 關한 硏究)

  • Lee, Jong Back;Song, Jin Cherl;Choi, Dae Woong
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 1996
  • A number of thermotropic liquid crystalline polyurethanes with mesogenic unit were synthesized by polyaddition of a para-type diisocyanate such as 1, 4-phenylene diisocyanate(1,4-PDI) with 4, 4'-bis($\omega$-hydorxyalkoxy) biphenyls($BP{m}$) in DMF. The thermal and liquid crystab line properties were examined by differential scanning calorimetry(DSC), polarized optical microscopy, and wide-angle X-ray scattering(WAXS). Intrinsic viscosities of the polymers exbibited two endothermic peaks correspondinding to phase transitions of melting and isotropization. For example, polyurethane(1,4-PDI/($BP{11}$) ) was found to display a liquid crystalline phase between 177 to 205$^{\circ}C$. In order to know how the hydrogen bonding interaction affects the formation of mesophases in polyurethane 1, 4-PDI/($BP{8}$) / thermal processing FT-IR measurements were carried out. It was found that the stretches regarded as shift to higher frequency region with increasing temperature which showed grdually their liquid crystalline phase

  • PDF

The effect of nano-Zinc oxide on the self-cleaning properties of cotton fabrics for textile application

  • Panutumrong, Praripatsaya;Metanawin, Tanapak;Metanawin, Siripan;O-Charoen, Narongchai
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The self-cleaning properties of nano-zinc oxide on cotton fabrics have been investigated. The cotton fabric has been prepared by pad-dry method. The nano-zinc oxide was encapsulated in the polystyrene particle by mini-emulsion process prior used. The loading amount of zinc oxide particles into the mini-emulsion were various from 1% wt to 40%wt. The particles sizes of ZnO-encapsulated polystyrene mini-emulsion were determined using dynamic light scattering. It was showed that the particle size of the mini-emulsion was in the range of 124-205 nm. The topography and morphology of ZnO-encapsulated polystyrene which coated on cotton fabrics was observed using scanning electron microscopy. The crystal structure of ZnO-coated on cotton fabrics was explored by X-ray diffraction spectroscopy. The photocatalytic activities of zinc oxide were present through the self-cleaning properties. The presents of the zinc oxide on cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

  • Shin, Young-Hak;Lee, Wan-Duk;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.662-670
    • /
    • 2007
  • The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.