• Title/Summary/Keyword: X-Ray Photoelectron Spectroscopy

Search Result 1,388, Processing Time 0.027 seconds

TENSILE BOND STRENGTH OF ALUNMINA CORE TREATED BY ION ASSISTED REACTION (이온보조반응법으로 처리한 알루미나 코아의 인장결합강도에 관한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Boo-Byung;Choi, Won-Kook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.704-723
    • /
    • 2000
  • This study was undertaken to evaluate the tensile bond strength of In-Ceram alumina core treat-ed by ion assisted reaction(IAR). Ion assisted reaction is a prospective surface modification technique without damage by a keV low energy ion beam irradiation in reactive gas environments or reactive ion itself. 120 In-Ceram specimens were fabricated according to manufacturer's directions and divided into six groups by surface treatment methods of In-Ceram alumina core. SD group(control group): sandblasting SL group: sandblasting + silane treatment SC group: sandblasting + Siloc treatment IAR I group: sandblasting + Ion assisted reaction with argon ion and oxygen gas IAR II group: sandblasting + Ion assisted reaction with oxygen ion and oxygen gas IAR III group: sandblasting + Ion assisted reaction with oxygen ion only For measuring of tensile bond strength, pairs of specimens within a group were bonded with Panavia 21 resin cement using special device secured that the film thickness was $80{\mu}m$. The results of tensile strength were statistically analyzed with the SPSS release version 8.0 programs. Physical change like surface roughness of In-Ceram alumina core treated by ion assistad reaction was evaluated by Contact Angle Measurement, Scanning Electron Microscopy, Atomic Force Microscopy; chemical surface change was evaluated by X-ray Photoelectron Spectroscopy. The results as follows: 1. In tensile bond strength, there were no statistically significant differences with SC group, IAR groups and SL group except control group(P<0.05). 2. Contact angle measurement showed that wettability of In-Ceram alumina core was enhanced after IAR treatment. 3. SEM and AFM showed that surface roughness of In-Ceram alumina core was not changed after IAR treatment. 4. XPS showed that IAR treatment of In-Ceram alumina core was enabled to create a new functional layer. A keV IAR treatment of In-Ceram alumina core could enhanced tensile bond strength with resin cement. In the future, this ion assisted reaction may be used effectively in various dental materials as well as in In-Ceram to promote the bond strength to natural tooth structure.

  • PDF

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.

Hydrogeneted Amorphous Carbon Nitride Films on Si(100) Deposited by DC Saddle Field Plasma Enhanced Chemical Vapor Deposition ($N_2/CH_4$가스비에 따른 Hydrogenated Amorphous Carbon Nitride 박막의 특성)

  • 장홍규;김근식;황보상우;이연승;황정남;유영조;김효근
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.242-247
    • /
    • 1998
  • Hydrogenated amorphous carbon nitride[a-C:H(N)] films were deposited on p-type Si(100) at room temperature with bias voltage of 200 V by DC saddle-field plasma-enhanced chemical vapor deposition. Effects of the ratio of $N_2$ to $CH_4$($N_2/CH_4$), in the range of 0 and 4 on such properties as optical properties, microstucture, relative fraction of nitrogen and carbon, etc. of the films have been investigated. The thickness of the a-C:H(N) film was abruptly decreased with the addition of nitrogen, but at $N_2/CH_4$>0.5, the thickness of the film gradually decreased with the increase of the $N_2/CH_4$. The ratio of N to C(N/C) of the films was saturated at 0.25 with the increase of $N_2CH_4$. N-H, C≡N bonds of the films increased but C-H bond decreased with the increase of $N_2CH_4$.Optical band gap energy of the film decreased from 2.53 eV at the ratio of $N_2CH_4$=4.

  • PDF

Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound (이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성)

  • Kang, Hyung Dae;Kim, Hwa Jin;Lee, Jae Heung;Suh, Dong Hack;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Polyimide (PI) surface modification was carried out by ion-beam treatment and silane-imidazole coupling agent to improve the adhesion between polyimide film and copper. Silane-imidazole coupling agent contains imidazole functional groups for the formation of a complex with copper metal through a coordination bonding and methoxy silane groups for the formation of siloxane polymers. The PI film surface was first treated by argon (Ar)/oxygen ($O_2$) ion-beam, followed by dipping it into a modified silane-imidazole coupling agent solution. The results of X-ray photoelectron spectroscopy (XPS) spectra revealed that the $Ar/O_2$ plasma treatment formed oxygen functional groups such as hydroxyl and carbonyl groups on the polyimide film surface and confirmed that the PI surface was modified by a coupling reaction with imidazole-silane coupling agent. Adhesion between copper and the treated PI film by ion-beam and coupling agent was superior to that with untreated PI film. In addition, adhesion of PI film treated by an $Ar/O_2$ plasma to copper was better than that of PI film treated by a coupling agent. The peeled-off layers from the copper-PI film joint were completely different in chemical composition each other. The layer of PI film side showed similar C1s, N1s, O1s spectra to the original Upilex-S and no Si and Cu atoms appeared. On the other hand the layer of copper side showed different C1s and N1s spectra from the original PI film and many Si and Cu atoms appeared. This indicates that the failure occurs at an interface between the imidazole-silane and PI film layers rather than within the PI layers.

  • PDF

Improvement of the Adhesion Properties between Aluminum and a Parylene-C Film by Using the Duoplasmatron Ion Source (Duoplasmatron Ion Source를 이용한 Parylene과 Al의 접착력 향상에 관한 연구)

  • Choi, Sung-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • In order to improve the adhesion between poly-monochloro-para-xylylene (Parylene-C) film and Aluminum thin film, the surface of Parylene-C film was irradiated by ${O_2}^+$ and $Ar^+$ ion beam generated by duoplamatron ion source. The ion dose of $Ar^+$ and ${O_2}^+$ was changed from $5{\times}10^{14}$ to $1{\times}10^{17}/cm^2$ and the ion beam energy was 1 kV. Contact angles of water on Parylene-C modified by $Ar^+$ and ${O_2}^+$ ion irradiation decreased from $78^{\circ}$ to around $17^{\circ}$, and $9^{\circ}$, respectively. X-ray photoelectron spectroscopy analysis shows that the hydrophilic groups were formed on the surface of Parylene-C by chemical reaction between the unstable chains induced by the ion irradiation and oxygen ions or residual oxygen gas. The hydrophilic groups were identified as C-O bond, C=O bond and (C=O)-O bond. The cross cut tape test which was applied to characterize the adhesion between Al thin film and Parylene-C film modified by ${O_2}^+$ ions irradiation shows that the adhesion strength was improved as increasing ion dose.

The Oxidation Study of Lead-Free Solder Alloys Using Electrochemical Reduction Analysis (전기화학적 환원 분석을 통한 무연 솔더 합금의 산화에 대한 연구)

  • Cho Sungil;Yu Jin;Kang Sung K.;Shih Da-Yuan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.35-40
    • /
    • 2005
  • The oxidation of pure Sn and Sn-0.7Cu, Sn-3.5Ag, Sn-lZn, and Sn-9Zn alloys at $150^{\circ}C$ was investigated. Both the chemical nature and the amount of oxides were characterized using electrochemical reduction analysis by measuring the electrolytic reduction potential and total transferred electrical charges. X-ray photoelectron spectroscopy (XPS) was also conducted to support the results of reduction analysis. The effect of Cu, Ag and Zn addition on surface oxidation of Sn alloys is reported. For Sn, Sn-0.7Cu and Sn-3.5Ag, SnO grew first and then the mixture of SnO and $SnO_2$ was found. $SnO_2$ grew predominantly for a long-time aging. For Zn containing Sn alloys, both ZnO and $SnO_2$ were formed. Zn promotes the formation of $SnO_2$. Sn oxide growth rate of Pb-free solder alloys was also discussed in terms of alloying elements.

  • PDF

Effect of magnesium and calcium phosphate coatings on osteoblastic responses to the titanium surface

  • Park, Ki-Deog;Lee, Bo-Ah;Piao, Xing-Hui;Lee, Kyung-Ku;Park, Sang-Won;Oh, Hee-Kyun;Kim, Young-Joon;Park, Hong-Ju
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.402-408
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the surface properties and in vitro bioactivity to osteoblasts of magnesium and magnesium-hydroxyapatite coated titanium. MATERIALS AND METHODS. Themagnesium (Mg) and magnesium-hydroxyapatite (Mg-HA) coatings on titanium (Ti) substrates were prepared by radio frequency (RF) and direct current (DC) magnetron sputtering.The samples were divided into non-coated smooth Ti (Ti-S group), Mg coatinggroup (Ti-Mg group), and Mg-HA coating group (Ti-MgHA group).The surface properties were evaluated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy (AFM). Cell adhesion, cell proliferation and alkaline phosphatase (ALP) activity were evaluated using MC3T3-E1 cells. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed. RESULTS. Cross-sectional SEM images showed that Mg and Mg-HA depositionson titanium substrates were performed successfully. The surface roughness appeared to be similaramong the three groups. Ti-MgHA and Ti-Mg group had improved cellular responses with regard to the proliferation, alkaline phosphatase (ALP) activity, and bone-associated markers, such as bone sialoprotein (BSP) and osteocalcin (OCN) mRNA compared to those of Ti-S group. However, the differences between Ti-Mg group and Ti-MgHA group were not significant, in spite of the tendency of higher proliferation, ALP activity and BSP expression in Ti-MgHA group. CONCLUSION. Mg and Mg-HAcoatings could stimulate the differentiation into osteoblastic MC3T3-E1 cells, potentially contributing to rapid osseointegration.

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy (혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성)

  • Hwang, S.L.;Kim, K.H.;Jang, K.S.;Jeon, H.S.;Choi, W.J.;Chang, J.H.;Kim, H.S.;Yang, M.;Ahn, H.S.;Bae, J.S.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

Interfacial reaction and Fermi level movements of p-type GaN covered by thin Pd/Ni and Ni/Pd films

  • 김종호;김종훈;강희재;김차연;임철준;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • GaN는 직접천이형 wide band gap(3.4eV) 반도체로서 청색/자외선 발광소자 및 고출력 전자장비등에의 응용성 때문에 폭넓게 연구되고 있다. 이러한 넓은 분야의 응용을 위해서는 열 적으로 안정된 Ohmic contact을 반드시 실현되어야 한다. n-type GaN의 경우에는 GaN계면에서의 N vacancy가 n-type carrier로 작용하기 때문에 Ti, Al, 같은 금속을 접합하여 nitride를 형성함에 의해서 낮은 접촉저항을 갖는 Ohmic contact을 하기가 쉽다. 그러나 p-type의 경우에는 일 함수가 크고 n-type와 다르게 nitride가 형성되지 않는 금속이 Ohmic contact을 할 가능성이 많다. 시료는 HF(HF:H2O=1:1)에서 10분간 초음파 세척을 한 후 깨끗한 물에 충분히 헹구었다. 그런 후에 고순도 Ar 가스로 건조시켰다. Pd와 Ni은 열적 증착법(thermal evaporation)을 사용하여 p-GaN에 상온에서 증착하였다. 현 연구에서는 열처리에 의한 Pd의 clustering을 줄이기 위해서 wetting이 좋은 Ni을 Pd 증착 전과 후에 삽입하였으며, monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy)을 사용하여 열처리 전과 40$0^{\circ}C$, 52$0^{\circ}C$ 그리고 695$0^{\circ}C$에서 3분간 열처리 후의 온도에 따른 morphology 변화, 계면반응(interfacial reaction) 및 벤드 휨(band bending)을 비교 연구하였다. Nls core level peak를 사용한 band bending에서 Schottky barrier height는 Pd/Ni bi-layer 접합시 2.1eV를, Ni/Pd bi-layer의 경우에 2.01eV를 얻었으며, 이는 Pd와 Ni의 이상적인 Schottky barrier height 값 2.38eV, 2.35eV와 비교해 볼 때 매우 유사한 값임을 알 수 있다. 시료를 후열처리함에 의해 52$0^{\circ}C$까지는 barrier height는 큰 변화가 없으나, $650^{\circ}C$에서 3분 열처리 후에 0.36eV, 0.28eV 만큼 band가 더 ?을 알 수 있었다. Pd/Ni 및 Ni/Pd 접합시 $650^{\circ}C$까지 후 열 처리 과정에서 계면에서 matallic Ga은 온도에 비례하여 많은 양이 형성되어 표면으로 편석(segregation)되어지나, In-situ SAM을 이용한 depth profile을 통해서 Ni/Pd, Pd/Ni는 증착시 uniform하게 성장함을 알 수 있었으며, 후열처리 함에 의해서 점차적으로 morphology 의 변화가 일어나기 시작함을 볼 수 있었다. 이는 $650^{\circ}C$에서 열처리 한후의 ex-situ AFM을 통해서 재확인 할 수 있었다. 이상의 결과로부터 GaN에 Pd를 접합 시 심한 clustering이 형성되어 Ohoic contact에 문제가 있으나 Pd/Ni 혹은 Ni/Pd bi-layer를 사용함에 의해서 clustering의 크기를 줄일 수 있었다. Clustering의 크기는 Ni/Pd bi-layer의 경우가 작았으며, $650^{\circ}C$ 열처리 후에 barrier height는 Pd/Ni bi-layer의 경우에도 Ni의 영향을 받음을 알 수 있었다.

  • PDF