• Title/Summary/Keyword: X-형 가새골조

Search Result 3, Processing Time 0.021 seconds

Effect of Mid-span Gusset Plates on the Behavior of Multi-Story X-Braced Frames (중앙부 거셋플레이트의 다층 X-형 가새골조 거동에 미치는 영향)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Steel braced frames are commonly used because braced frames are one of the most economical and efficient seismic resisting systems. However, research into the behavior of multi-story X-braced frame systems with mid-span gusset plates, as used in practice, is limited. As a result, their seismic performance and the influence of connection design on this performance are not well understood. Detailed nonlinear computer analyses of the frame were performed prior to building the test specimens and were used to aid the design and to predict the system performance. These analyses suggested significantly different behavior for the midspan gusset plate than that noted for the corner gusset plate connections. This paper summarizes the results of a full scale, 2-story braced frame analysis and test on concentrically braced frames.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF