• Title/Summary/Keyword: X선량

Search Result 899, Processing Time 0.028 seconds

Measurement and Analysis of X-ray Absorbed Dose in Water Phantom using TLD (TLD를 이용한 X-선 수중 흡수선량 측정 및 해석)

  • Oh, Jang-Jin;Jun, Jae-Shik;Hah, Suck-Ho;Kim, Wuon-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.21-28
    • /
    • 1988
  • Absorbed dose in water was analyzed by Burlin's general cavity theory for medium X-ray energy region (HVL : 0.29, 0.84, 1.60, 2.62mm Cu) using LiF : PTFE TL dosimeter(0.4 mm ${\times}\;{\phi}$ 12.5mm, hot-pressed LiF TLD-700) which was enclosed in lucite capsule. The absorbed dose rate at 5cm depth in water phantom was determined with measurement error of ${\pm}5%$. This result was compared to that of the ionization method, indirectly absolute measurement method, of which measurement error of ${\pm}2%$. The difference between these two results lies within measurement error of LiF : PTFE method. Therefore, the absorbed dose in water obtained by LiF: PTFE is reliable, and this result suggests the base to estimate dose-equivalent for medium X-rays.

  • PDF

Comparison of dose-variation in skin due to Set-up error in case of radiation therapy for left breast using Volumetric Modulated Arc Therapy(VMAT) (좌측 유방에 대한 용적 변조 회전 방사선 치료 시 자세 오차로 인한 피부 선량)

  • Kwon, Yongjae;Park, Ryeunghwang;Kim, Seyoung;Jung, Dongmin;Baek, Jonggeol;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.55-62
    • /
    • 2021
  • Purpose: This study aims to contribute to the reduction of complications of breast cancer radiation therapy by analyzing skin dose differences due to Set-up error. Materials and Method: Pseudo breast was produced using a 3D printer, applied to the phantom, and images were acquired through CT. Treatment plan was carried out that the PTV, which contains 95% of the prescription dose, could be more than 95% of the volume, so that Dmax did not exceed 107% of the prescription dose. The Set-up error was evaluated by applying ±1mm/±3mm/±5mm to the X-axis, Y-axis, and Z-axis. Results: The dose-variation in skin due to Set-up error was approximately 106% to 123% compared to prescription dose, and the highest dose in skin was 49.24 Gy at 5mm Set-up error in the lateral direction of the X-axis. More than 107% of the prescription dose was the widest at 6.87 cc in skin lateral. Conclusions: If a Set-up error occurs during left breast cancer VMAT, a great difference in skin dose was shown in the lateral direction of the X-axis. If more effort is made to align the X-axis of the breast treated during CBCT registration, the dose-variation of skin will be reduced.

Study on dose comparison using X-Jaw split in VMAT treatment planning for left breast cancer including supraclavicular lymph nodes. (쇄골 상부 림프절을 포함하는 왼쪽 유방암의 VMAT 치료계획시 X-Jaw split을 이용한 선량비교에 관한 연구)

  • Kim, Hak Jun;Lee, Yang Hoon;Min, Jae Soon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose : The usability of X-Jaw split VMAT was evaluated by comparative analysis of the dose distribution between the treatment plan divided by X-Jaw and Full field VMAT treatment plan in left breast cancer treatment including supraclavicular lymph nodes. Materials and Methods : 10 patients with left breast cancer, including supraclavicular lymph nodes, were simulated using vacuum cushion, and 2 Full field Arc VMAT and 4 X-Jaw split Arc VMAT were planned The treatment plan was designed to include more than 95% of the Planning Target Volume (PTV) and to be minimally irradiated in the surrounding Organ at risk (OAR). Dose analysis of PTV and OAR was performed through dose volume histogram (DVH). Results : The Full field VMAT treatment plan and the X-Jaw split VMAT treatment plan of 10 patients were expressed as average values and compared. The difference between the two treatment plans was not large, with a Conformity index (CI) of 1.05±0.04, 1.04±0.03, and a Homogeneity index (HI) of 1.07±0.008, 1.07±0.009. For OAR, V5 in the left lung is 56.1±6.50%, 50.4±6.30%, and V20 is 20.0±4.15%, 13.52±3.61%. Compared to Full field VMAT, V5 decreased by 10.0% V20 by 32.6% in X-Jaw split VMAT. The V30 of the heart is 3.68±1.85%, 2.23±1.52%, and the Mean dose is 8.93±1.65 Gy, 7.67±1.52 Gy. In the X-Jaw split VMAT, V30 decreased by 39.3% and the Mean dose decreased by 14.1%. The left lung and heart, which are normal tissues, were found to have a statistical significance of that p-value is less than 0.05. Conclusion : In the case of left breast cancer treatment, which includes Supraclavicular lymph nodes with a large PTV volume and a length of X Jaw of 15 cm or more, the X-Jaw split VMAT shows improved dose distribution, which can reduce radiation dose of OAR such as lungs and heart, while maintaining similar PTV coverage with HI and CI equivalent to Full field VMAT. It is thought to be effective in reducing radiation complications.

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

Dose Calculation of Heterogeneous Lung Tissue on 6MV X-ray Therapy (6MV X-선에 의한 폐조직의 심부선량변화와 임상응용)

  • 이경자;장승희;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • For effective radiotherapy, it should always be considered that calculation of different dose distribution in heterogenous tissue is important particularly on lung which has low density and large volume. To take precise dose distribution of 6MV X-ray in the thoracic cage, the authors had made a tissue equivalent phantom for thorax, measured dose distribution by thermoluminescent dosimeter and mm dosimeter, and derived methmetical equation coincided with provided theoretical formula. In comparision with isodose curve on case of homogeneous soft tissue, dose of heterogeneous lung tissue had been shown increase about 4% per cm depth on one and multiportal field, less than 15% difference on rotation field for esophagus, and around 20% difference on rotation field for lung according to the degree of rotation angle that must be corrected by dose compensation.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

A Comparative Study of Image Quality and Radiation Dose according to Variable Added Filter and Radiation Exposure in Diagnostic X-Ray Radiography (진단용 X-선 촬영시 부가 필터 및 노출의 변화에 따른 피폭선량 및 영상 화질 비교 연구)

  • Choi, Nam-Gil;Seong, Ho-Jin;Jeon, Joo-Seop;Kim, Youn-Hyun;Seong, Dong-Ook
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • To know which parameters were acceptable for achieving lowest radiation exposure to the patients and highest image quality at the diagnostic X-ray radiography, we measured the patient radiation dose and image quality in transmitted PACS (Picture Archiving and Communication System) at variable combinations of the added filters. As a result, the Dose Area Product (DAP: $mGy{\cdot}cm^2$) and Entrance Surface Doses (ESDs: $mGy$) was lowest at 1 mmAl + 0.2 mmCu and highest at 0 mmAl. The histogram of the image quality by transmitted PACS was not significantly different at variable combinations of exposure parameters on the MATLAB. In conclusion, this study can be helpful for expecting radiation dose-exposure and control exposure parameters for the diagnostic X-ray radiography.

Comparison of Beam Quality Index of High Photon Beam (고에너지 광자선의 선질 지표에 관한 비교)

  • 신동오;지영훈;박성용;박현주;김회남;홍성언;권수일;서태석;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 1998
  • It is necessarily to evaluate the energy of X-ray emitted from linear accelerator in order to determine the accurate absorbed dose. The method of direct measurement for x-ray energy is very difficult and impractical. Therefore the method of using beam quality index is generally used. Several dosimetry protocols recommend the use of quality indices such as depth of dose maximum at radiation central axis, dose gradient, and dose level. The linear accelerator manufactures follow the recommendation as dosimetry protocols. The study was performed for us to select the most suitable parameter among the Quality indices as described above. For photon beams of 4, 6, 10, 15, and 21 MV nominal energies produced by four kinds of accelerators(Mitsubishi, Scanditronix, Siemens, Varian) in eleven institutions, We evaluated the x-ray energies obtained by the Quality indices as recommended by several dosimetry protocols and manufactures. Results showed that there were energy spreads according to the same accelerators and Quality indices even though nominal energies were same. It appeared that the percent depth dose at 10 cm (D$_{10}$(%)) gave the smallest deviation and spread of energies. As energies increased, the energy deviation increased for all the quality indices. It is desirable for the use of unified quality index to compare the evaluation of beam quality at different institutions.

  • PDF

Characteristics of Dose Distribution at Junctional Area Using the Divergency Cutout Block in the Abutted Field of Photon and Electron Beams (광자선과 전자선의 인접조사에서 선속 퍼짐현상이 고려된 전자선 차폐물을 이용한 접합 조사면의 선량분포 특성)

  • Im, In-Chul;Lee, Jae-Seung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • This study investigated characteristics of dose distribution at junction field of X-ray and electron beams according to the method for fabricating the insert block on the electron cone. Insert block were fabricated to the divergency cutout block and the straight cutout block. For the 6 MV X-ray and 10 MeV nominal energy of electron beam, we was adjacent to the light field of X-ray and electron beam at a surface of matrix chamber and measured to beam profile of abutted field in the 0, 1, 2, 3 cm measurement depth. As a result, characteristics of dose distribution at junction field, straight block was existent that over dose area exceed the give dose more than 5% and under dose area with a rapid change in dose distribution. However, divergency block had remarkably decreased the over dose area caused by the lateral scattering effects of decrease, and being existed uniformity dose distribution in the junction field. Therefore, divergency block were the benefits of radiation dose delivery, in order to applied the clinical, measurement of electron beams according to the fabrication method of the block should be considered carefully.

A Monte Carlo Study of Dose Enhancement according to the Enhancement Agents (몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Hwang, Chulhwan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • Dose enhancement effects at megavoltage (MV) X and ${\gamma}-ray$ energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide ($Fe_2O_3$) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co-60 ${\gamma}-ray$ were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.