• Title/Summary/Keyword: Wyner-Ziv codec

Search Result 8, Processing Time 0.019 seconds

A Side Information Generation Using Adaptive Estimation and Its Performance Comparison in PDWZ CODEC (화소 영역 Wyner-Ziv코덱에서 적응적 예측을 통한 보조정보 생성 방식과 성능 비교)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.383-393
    • /
    • 2010
  • DVC (Distributed Video Coding) allows us to explore the video statistics at the decoder side, resulting in a less complex encoder and more complex decoder. In this approach, it is important to generate a good prediction to the current Wyner-Ziv frame, called side information, which plays a crucial role in the overall performance of a DVC system. Conventional MCFI (motion compensated frame interpolation) techniques, which explore temporal correlations between neighbor frames of the current frame, preform the block-based or object-based motion estimation, but, they do not include the basis frame for the Wyner-Ziv frame. This paper proposes an efficient way to get better side information, by finding the average frame between neighbor frames and by comparing adaptively the candidate blocks. Through computer simulations, it is shown that the proposed method can improve the performance up to 0.4dB and provide better subjective and objective visual qualities in Wyner-Ziv CODEC.

Improved Side Information Generation using Field Coding for Wyner-Ziv Codec (Wyner-Ziv 부호화기를 위한 필드 부호화 기반 개선된 보조정보 생성)

  • Han, Chan-Hee;Jeon, Yeong-Il;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.10-17
    • /
    • 2009
  • Wyner-Ziv video coding is a new video compression paradigm based on distributed source coding theory of Slepian-Wolf and Wyner-Ziv. Wyner-Ziv coding enables light-encoder/heavy-decoder structure by shifting complex modules including motion estimation/compensation task to the decoder. Instead of performing the complicated motion estimation process in the encoder, the Wyner-Ziv decoder performs the motion estimation for the generation of side information in order to make the predicted signal of the Wyner-Ziv frame. The efficiency of side information generation deeply affects the overall coding performance, since the bit-rates of the Wyner-Ziv coding is directly dependent on side information. In this paper, an improved side information generation method using field coding is proposed. In the proposed method, top fields are coded with the existing SI generation method and bottom fields are coded with new SI generation method using the information of the top fields. Simulation results show that the proposed method improves the quality of the side information and rate-distortion performance compared to the conventional method.

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

SELECTIVE HASH-BASED WYNER-ZIV VIDEO CODING

  • Do, Tae-Won;Shim, Hiuk-Jae;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.351-354
    • /
    • 2009
  • Distributed video coding (DVC) is a new coding paradigm that enables to exploit the statistics among sources only in decoder and to achieve extremely low complex video encoding without any loss of coding efficiency. Wyner-Ziv coding, a particular implementation of DVC, reconstructs video by correcting noise on side information using channel code. Since a good quality of side information brings less noise to be removed by the channel code, generation of good side information is very important for the overall coding efficiency. However, if there are complex motions among frames, it is very hard to generate a good quality of side information without any information of original frame. In this paper, we propose a method to enhance the quality of the side information using small amount of additional information of original frame in the form of hash. By decoder's informing encoder where the hash has to be transmitted, side information can be improved enormously with only small amount of hash data. Therefore, the proposed method gains considerable coding efficiency. Results of our experiment have verified average PSNR gain up to 1 dB, when compared to the well-known DVC codec, known as DISCOVER codec.

  • PDF

Reducing Decoding Complexity by Improving Motion Field Using Bicubic and Lanczos Interpolation Techniques in Wyner-Ziv Video Coding

  • Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2351-2369
    • /
    • 2012
  • This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.

A PDWZ Encoder Using Code Conversion and Bit Interleaver (코드변환과 비트 인터리버를 이용한 화소영역 Wyner-Ziv 부호화 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.52-62
    • /
    • 2010
  • Recently, DVC (Distributed Video Coding) is attracting a lot of research works since this enables us to implement a light-weight video encoder by distributing the high complex tasks such as motion estimation into the decoder side. In order to improve the coding efficiency of the DVC, the existing works have been focused on the efficient generation of side information (SI) or the virtual channel modeling which can describe the statistical channel noise well. But, in order to improve the overall performance, this paper proposes a new scheme that can be implemented with simple bit operations without introducing complex operation. That is, the performance of the proposed scheme is enhanced by using the fact that the Wyner-Ziv (WZ) frame and side information are highly correlated, and by reducing the effect of virtual channel noise which tends to be clustered in some regions. For this aim, this paper proposes an efficient pixel-domain WZ (PDWZ) CODEC which effectively exploits the statistical redundancy by using the code conversion and Gray code, and then reduces the channel noise by using the bit interleaver. Through computer simulations, it is shown that the proposed scheme can improve the performance up to 0.5 dB in objective visual quality.

A Method of Estimating Distortion in Pixel-Domain Wyner-Ziv Residual Video Coding (화면 간 차이신호의 화소영역 위너-지브 비디오 부호화 기법에서 왜곡 예측방법)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.891-898
    • /
    • 2014
  • The DVC (Distributed Video Coding) provides a theoretical basis for the implementation of light video encoder. Conventionally, lots of studies have been focused on the codec scheme of Stanford University that has a feedback channel to control the bit rate finely. However, the codec scheme can not evaluate the qualities of the frames reconstructed by the received parity bits at the decoder side. This paper presents an efficient method of estimating distortion by correcting the virtual channel noises in side information and then facilitating the measurements of the visual qualities. Through several simulations, it is shown that the proposed method is very efficient in estimating the visual qualities of the reconstructed WZ frames.