High quality single crystalline strain controlled wurtzite ZnO nanowire arrays have been grown on conductive silicon and ITO substrates by a facile hydrothermal method. The diameter of the nanowires was found to be less than 90 nm approximately for both of the two kinds of substrates. The quality of the ZnO nanowire arrays is dramatically improved by hanging the substrate above from the bottom of the Teflon lined autoclave. The structural investigation indicates the preferential orientation of the nanowire along c-axis. In order to make the convincible comparison, the photoluminescence property of the nanowire arrays grown under different conditions are measured, the sharp near band edge emission from PL, low turn-on voltage ($1.9V/{\mu}m$) from field emission measurement and Fowler-Nordheim plot was investigated from ZnO nanowire arrays grown by proposed substrate hanging method.
본 연구에서는 GaN 나노와이어의 인장, 압축, 하중 제거 전산모사를 분자동역학 방법을 통하여 수행하였고, 평형 분자동역학 방법인 Green-Kubo 방법을 이용하여 각각의 변형된 구조의 나노와이어의 열전도율을 구하였다. 단면의 형상이 육각형이고, 길이 방향이 [0001] 격자 방향으로 형성된 나노와이어에 인장 하중이 작용하게 되면 나노와이어의 원자 구조는 초기의 wurtzite 구조에서 정방정계 구조로 변형된다. 초기 상태에 압축 하중이 작용하는 경우에는 상변이 현상은 나타나지 않는다. 압축에서 인장으로 변형률이 증가함에 따라 나노와이어의 열전도율은 감소하는 경향을 나타낸다. 이 같은 열전도율의 변화는 변형률에 따른 포논의 감쇠시간 감소에 의한 것이다. 인장에 의해 변형된 정방정계 구조의 나노와이어에서 인장 하중을 제거하는 경우에는 초기의 wurtzite 구조로의 역상변이 현상이 나타나고, 이와 같은 역상변이 과정에 wurtzite 구조와 정방정계 구조가 동시에 나타나는 중간 단계가 존재한다. 중간 단계의 열전도율은 같은 변형률에서 wurtzite 구조일 때보다 낮은 특성을 갖는다. 내부 원자 구조에 따른 열전도율의 차이는 구조적 변형에 의한 포논의 군속도 변화에 따른 것이다.
Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
Advances in nano research
/
제2권3호
/
pp.157-172
/
2014
The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.
Kim, Soohyun;Park, Sunghoon;Jung, Jihwan;Lee, Chongmu
한국진공학회:학술대회논문집
/
한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
/
pp.315.2-315.2
/
2014
Pt-functionalized ZnS nanowires were synthesized on Au-deposited c-plane sapphire substrates by thermal evaporation of ZnS powders followed by wet Pt coating and annealing. The $NO_2$ gas sensing properties of multiple-networked Pt-functionalized ZnS nanowire sensors were examined. Scanning electron microscopy showed the nanowires with diameters of 20-80 nm. Transmission electron microscopy and X-ray diffraction showed that the nanowires were wurtzite-structured ZnS single crystals. The Pt-functionalized ZnS nanowire sensors showed enhanced sensing performance to $NO_2$ gas at $150^{\circ}C$ compared to pristine ZnS nanowire sensors. Pristine and Pt-functionalized ZnS nanowire sensors showed responses of 140-211% and 207-488%, respectively, to 1-5 ppm $NO_2$, which are better than or comparable to those of many oxide semiconductor sensors. In addition, the underlying mechanism of the enhancement of the sensing properties of ZnS nanowires by Pt functionalization is discussed.
GaN nanowires has much interest as one-dimensional materials for blue light LED. GaN-based materials have been the subject of intensive research for blue light emission and high temperature/high power electronic devices. In this letter, the synthesis of GaN nanowires by the reaction of mixture of GaN nanowires by the reaction of mixture of Ga meta and GaN powder with NH$_3$ using thermal chemical vapor deposition is reported. X-ray diffraction, energy dispersive x-ray spectrometer, scanning electron microscopy, and transmission electron microscopy indicate that those GaN nanowires with hexagonal wurtzite structure were about 60nm in diameter and up to several hundreds of micrometers in length.
Kim, Taeok;Park, Sungjin;Kang, Hang-Kyu;Bae, Jungmin;Cho, M.H.
한국진공학회:학술대회논문집
/
한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
/
pp.362.1-362.1
/
2016
InAs nanowires were synthesized by a vapor-liquid-solid method with InAs powder. The composition and crystalline structure of nanowires were confirmed by energy-dispersive spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM), respectively. The thermal conduction of nanowires was investigated by the optical method using Raman spectroscopy: i.e., the local temperature on nanowire was determined by laser heating. As temperature increased, the Raman peaks are shifted to low frequency and broadened. The temperature dependent Raman scattering experiments was realized on InAs nanowires with different percentages of zinc-blende and wurtzite structure. The temperature dependence on the nanowire structure has been successfully obtained: the phonon scattering was more increased in InAs heretostructure nanowires, compared to the InAs nanowires with homostructure. The result strongly suggests that the thermal conduction can be effectively controlled by ordered interface without any decrease in electrical conduction.
1차원 반도체인 nanowires (NWs)는 전기적, 광학적으로 일반 bulk구조와 다른 특성을 가지고 있어서 현재 많은 연구가 되고 있다. 일반적으로 NWs는 Au 등의 금속 촉매를 이용하여 성장을 하게 되는데 이때 촉매가 오염물로 작용을 해서 결함을 만들어서 bandgap내에 defect level을 형성하게 된다. 본 연구는 Si(111) 기판 위에 Ga-droplet을 촉매로 사용을 하여 molecular beam epitaxy로 성장을 하였다. 성장온도는 600$^{\circ}C$로 고정을 하였고 growth rate은 GaAs(100) substrate에서 2.5 A/s로 Ga의 양을 고정하고 V/III ratio를 1부터 8까지 변화를 시켰다. As의 양에 따라서 생성되는 NWs의 개수가 증가하고 growth rate이 빨라지는 것을 확인할 수 있었다. Transmission Electron Microscopy 분석 결과 낮은 V/III ratio에서는 zincblende, wurtzite 그리고 stacking faults 가 혼재 되어 있는 것을 확인 할 수 있었다. 이러한 결함은 소자를 만드는데 한계가 있기 때문에 pure zincblende나 pure wurtzite를 가져야 하는데 V/III ratio : 8 에서 pure zincblende구조가 되었다. Gibbs-Thomson effect에 따르면 구조적 변화는 Ga droplet과 NWs의 접면에서 크기가 중요한 역할을 한다[1]. 연구 결과 V/III ratio : 8일 때 Ga droplet의 크기가 zincblende성장에 알맞다는 것을 예상할 수 있었다. laser confocal photoluminescence 결과 상온에서 1.43 eV의 bandgap을 가지는 bulk구조와는 다른 와 1.49eV의 bandgap을 가지는 것을 확인하였다.
We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wire-like thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at $200^{\circ}C$, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, $O_2$, $H_2$, $NH_3$, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.
The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.