• 제목/요약/키워드: Wrist Motion

검색결과 203건 처리시간 0.024초

몰입형 가상현실 프로그램 Rapael Smart Glove가 뇌졸중 환자의 상지기능에 미치는 영향 (Effects of Immersive Virtual Reality Intervention on Upper Extremity Function in Post-Stroke Patients)

  • 배원진;감경윤
    • 대한통합의학회지
    • /
    • 제5권3호
    • /
    • pp.1-9
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of an immersive, virtual reality-based exercise program on range of motion and dexterity in the upper extremities of stroke patients. Methods: Fifteen patients with hemiparesis after stroke participated in this study. The participants participated in Rapael Semart GloveTM, an immersive, virtual reality-based exercise program, performed for 30 minutes-, 3 times per week for 4 weeks. The Rapael Smart GloveTM program and a Box and Block Test (BBT) were used to measure range of motion and to assess dexterity, respectively, pre-and post-intervention. Results: Range of motion in pronation and supination of the forearm and flexion, extension, and ulnar deviation of the wrist improved after the intervention. Dexterity measured by BBT also improved. However, range of motion in flexion and extension of the fingers and radial deviation of the wrist did not improve. Conclusion: This study presents the effects of an immersive, virtual reality-based exercise program on hand function. In the future, a study comparing an immersive, virtual reality- based exercise program to other upper-extremity interventions for stroke patients should be conducted. A study about the effects of an immersive virtual reality program on activities of daily living is also needed.

테이핑과 손목 안정화 운동의 병행훈련이 출산 후 여성의 손목건강과 삶의 질에 미치는 효과 (Effect of Wrist Stabilization Exercise Combined with Taping on Wrist Health and Quality of Life in Postpartum Women with Wrist Pain)

  • 정경심;인태성
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권4호
    • /
    • pp.393-400
    • /
    • 2020
  • 본 연구는 4주간 테이핑을 병행한 손목 안정화 운동이 출산 후 여성의 손목건강과 삶의 질에 미치는 효과를 규명하기 위하여 실시되었다. 단일맹검 및 사전 무작위 임상시험으로 진행되었으며, 17명의 손목통증 환자는 무작위로 실험군(n=8)과 대조군(n=9)으로 배정되었다. 모든 대상자는 손목에 테이핑을 적용하였다. 추가적으로 실험군은 손목 안정화 운동을 하루 2번, 주 5회, 4주간 시행하였고, 대조군은 같은 기간 동안 관절가동범위 운동을 시행하였다. 통증은 시각사상척도(VAS)를 사용하여 측정하였고, 기능장애는 Disabilities of the Arm, Shoulder and Hand (DASH), 삶의 질은 Short-Form 36 items (SF-36)을 사용하였다. 훈련 후 실험군이 대조군에 비해 통증과 기능장애, 삶의 질이 유의하게 개선되었다(p<.05). 본 연구는 테이핑을 병행한 손목 안정화 운동이 출산 후 여성의 손목 건강과 삶의 질을 효과적으로 향상시킴을 증명하였다.

Discrimination of Motions with Physical Deformation of Muscles and EMG

  • Unkawa, Taksshi;Iida, Takeo
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.109-112
    • /
    • 2000
  • The purpose of the present study is to evaluate the basic upper-limb involved in products manipulation. Upper-limb muscular deformations and electromyography (EMG) measurements are used as indexes for estimated motion: hand opening and closing, wrist extending and flexing, pronation and supination, grasping conditions. Measured values are analyzed by multivariate analysis and a regression equation is obtained for estimating the characteristics of upper-limb performance. Muscular deformation is defined as a change in shape, such as a pressure changes when the hand or wrist moves. hand opening and closing can be discriminated at a higher percentage of accuracy by muscular deformation data than by EMG data. Muscular deformation measurements using air-pack pressure sensors were verified to be effective in motion estimation applications.

  • PDF

SCARA robot를 위한 4자유도 end-effector 개발 (Four degrees of freedom robot gripper for assembly robots)

  • 오세훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.511-516
    • /
    • 1991
  • A new end-effector has been devised and the problems resulted from using it with SCARA robots are discussed. The end effector has two modules: one composed of two ultrasonic motors and two encoders for controlling each finger, and the other module composed of two ultrasonic motors and two encoders for controlling the wrist. The wrist module adds two degrees of freedom to the SCARA type robot, which generally has four degrees of freedom. With independent finger actuation and touch sensors, the gripper under computer control can feedback information about part size and part presence. Ultrasonic motors with high torque and slow motion characteristics are used. The principle of ultrasonic motors is explained and the servo characteristics of ultrasonic motors are studied. They are controlled by the general motion controller (Hewlett Packard HCTL-1000) which is linked to an IBM-PC AT.

  • PDF

뇌졸중 환자를 위한 착용형 손 재활훈련기기, DULEX (DULEX, A Wearable Hand Rehabilitation Device for Stroke Survivals)

  • 김영민;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.919-926
    • /
    • 2010
  • This paper proposes a wearable hand rehabilitation device, DULEX, for persons with functional paralysis of upper-limbs after stoke. DULEX has three degrees of freedom for rehabilitation exercises for wrist and fingers except the thumb. The main function of DULEX is to extend the range of motions of finger and wrist being contracture. DULEX is designed by using a parallel mechanism, and its parameters such as length and location of links are determined by kinematic analysis. The motion trajectory of the designed DULEX is aligned to human hand to prevent a slip. To reduce total weight of DULEX, artificial air muscles are used for actuating each joint motion. In feedback control, each joint angle is indirectly estimated from the relations of the input air pressure and the output muscle length. Experimental results show that DULEX is feasible in hand rehabilitation for stroke survivals.

볼링 투구 동작 시 손목 지지대 착용에 따른 몸통과 상지 분절의 움직임 변화 (Motion Change of the Trunk and Upper Extremity Segment to Putting the Wrist Support on Throwing in Bowling)

  • 김태삼;이훈표;한희창
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.33-41
    • /
    • 2006
  • This study was to analysis three dimension angle of the upper extremity segment and trunk to putting the protector in women bowlers. For this study, the subjects selected 4 players of national and university team. All subjects putted in the same wrist support to satisfy the experiment conditions. To get three dimensions position coordination of swing motion used for 6 ProReflex MCU 240 camera produced by Qualisys. After position coordination calculation, Three dimension angle of the trunk and the upper extremity segment calculated for Matlab 6.5. the result is following; In the trunk motion, there were little differences among the subjects in a flexion and extension change. There were a lot of differences in motion change of the abduction-adduction and internal-external rotation, but the motion types translated to the adduction-abduction-adduction and from the internal rotation toward the external rotation. In the upper arm segment the Flexion and extension showed a consistent motion in the down swing and up swing phase. And the motion change of abduction-adduction and pronation-supination showed a abduction-adduction-abduction and pronation-supination change during swing phase. In the forearm segment changes, it showed a lot of differences among the subjects and a similar change with the upper arm segment. Especially, the hand segment showed a supination motion from the backswing apex to release phase, but for increasing a rotation velocity of ball, the hand segment translated toward pronation in follow throw phase.

The Effect of Wheelchair Propulsion on Carpal Tunnel Syndrome of Wrist Joint

  • Kong, Jin-Yong;Kwon, Hyuk-Cheol;Chang, Ki-Yeon;Jeong, Dong-Hoon
    • 한국전문물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.7-17
    • /
    • 2004
  • Individuals who propel wheelchairs have a high prevalence of upper extremity injuries (i.e., carpal tunnel syndrome, elbow/shoulder tendonitis, impingement syndrome). Musculoskeletal injuries can result from overuse or incorrect use of manual wheelchairs, and can hinder rehabilitation efforts. To better understand the mechanisms of upper extremity injuries, this study investigates the motion of the wrist during wheelchair propulsion. This study also examines changes in the variables that occur with fatiguing wheelchair propulsion to determine how the time parameters of wheelchair propulsion and the state of fatigue influence the risk of injury. A two dimensional (2-D) analysis of wrist movement during the wheelchair stroke was performed. Twenty subjects propelled a wheelchair handrim on a motor-driven treadmill at two different velocities (50, 70 m/min). The results of this study were as follows; The difference in time parameters of wheelchair propulsion (cadence, cycle time, push time, recovery time, and PSP ratio) at two different velocities was statistically significant. The wrist kinematic characteristics had statistically significant differences at two different velocities, but wrist radial deviation and elbow flexion/extension had no statistically significant differences. There were statistically significant differences in relation to fatigue in the time parameter of wheelchair propulsion (70 m/min) between initial 1 minute and final 1 minute. The wrist kinematic characteristics between the initial 1 minute and final 1 minute in relation to fatigue had statistically significant differences but the wrist flexion-extension (50 m/min) had no statistically significant differences. According to the results, the risk of musculoskeletal injuries is increased by fatigue from wheelchair propulsion. To prevent musculoskeletal injuries, wheelchair users should train in a muscle endurance program and consider wearing a splinting/grove. Moreover, wheelchair users need education on propulsion posture, suitable joint position, and proper recovery patterns of propulsion.

  • PDF

Position Change of the Neurovascular Structures around the Carpal Tunnel with Dynamic Wrist Motion

  • Kwon, Jae-Yoel;Kim, Ji-Young;Hong, Jae-Taek;Sung, Jae-Hoon;Son, Byung-Chul;Lee, Sang-Won
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권4호
    • /
    • pp.377-380
    • /
    • 2011
  • Objective : The purpose of this study was to determine the anatomic relationships between neurovascular structures and the transverse carpal ligament so as to avoid complications during endoscopic carpal tunnel surgery. Methods : Twenty-eight patients (age range, 35-69 years) with carpal tunnel syndrome were entered into the study. We examined through wrist magnetic resonance imaging in three different positions (neutral, radial flexion, and ulnar flexion) and determined several anatomic landmark (distance from the hamate hook to the median nerve, ulnar nerve, and ulnar vessel) based on the lateral margin of the hook of the hamate. The median nerve and ulnar neurovascular structure were studied with the wrist in the neutral, ulnar, and radial flexion positions. Results : The ulnar neurovascular structures usually passed just over or ulnar to the hook of the hamate. However, in 12 hands, a looped ulnar artery coursed 0.6-3.3 mm radial to the hook of the hamate and continued to the superficial palmar arch. The looped ulnar artery migrates on the ulnar side of Guyon's canal (-5.2-1.8 mm radial to the hook of the hamate) with the wrist in radial flexion. During ulnar flexion of the wrist, the ulnar artery shifts more radially beyond the hook of the hamate (-2.5-5.7 mm). Conclusion : It is appropriate to transect the ligament greater than 4 mm apart from the lateral margin of the hook of the hamate without placing the edge of the scalpel toward the ulnar side. We would also recommend not transecting the transverse carpal ligament in the ulnar flexed wrist position to protect the ulnar neurovascular structure.

앉은 자세에서 힘 수준에 따른 상지관절 동작별 최대 수용 반복 빈도수 분석 (Analysis of Maximum Acceptable Frequencies for Upper Extremity Motions with Forces in a Seated Position)

  • 권오채;유희천;정기효
    • 대한인간공학회지
    • /
    • 제24권2호
    • /
    • pp.65-70
    • /
    • 2005
  • Evaluation of repetitiveness for upper extremity intensive tasks is essential to determine the level of risk for upper extremity musculoskeletal disorders at the workplace. However, experimental data available to establish the acceptable levels of repetitiveness for various postures and forces is lacking. The present study examined the maximum acceptable frequencies(MAFs; motions/min.) of shoulder, elbow, wrist, and index finger motions at different forces(1kgf and 4kgf for shoulder, elbow, and wrist; 0.25kgf and 1 kgf for index finger) in sitting. Seventeen right-handed males in 20s without having any history musculoskeletal disorders participated in the MAF experiment. The participants determined their MAFs for the upper extremity motions by using the self-adjustment method and their work pulse(increase in heart rate; beats/min.) and rating of perceived exertion(RPE) were measured when working at MAF. The MAFs of elbow, wrist, and index finger motions for each force level were about 2, 3, and 6 times the corresponding MAF(9 at the high force and 24 at the low force) of shoulder motion and the MAFs at the low force increased about 2 times those at the high force. The work pulses of elbow, wrist, and index finger motions for each force level were 70%, 50%, and 30% of the corresponding work pulse(17 at the high force and 12 at the low force) of shoulder motion and the work pulses at the low force were about 70 % of those at the high force. Lastly, the RPEs of the upper extremity regions were about level 3(moderate) or below.

ESTIMATING THE MOTION OF THE HUMAN JOINTS USING OPTICAL MOTION CAPTURE SYSTEM

  • Park, Jun-Young;Kyota, Fumihito;Saito, Suguru;Nakajima, Masayuki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.764-767
    • /
    • 2009
  • Motion capture systems allow to measure the precise position of markers on the human body in real time. These captured motion data, the marker position data, have to be fitted by a human skeleton model to represent the motion of the human. Typical human skeleton models approximate the joints using a ball joint model. However, because this model cannot represent the human skeleton precisely, errors between the motion data and the movements of the simplified human skeleton model happen. We propose in this paper a method for measuring a translation component of wrist, and elbow joints on upper limb using optical motion capture system. Then we study the errors between the ball joint model and acquired motion data. In addition, we discuss the problem to estimate motion of human joint using optical motion capture system.

  • PDF