• Title/Summary/Keyword: Wrinkled Laminar flame

Search Result 14, Processing Time 0.015 seconds

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$) (유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$))

  • 이재득;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1661-1668
    • /
    • 1990
  • In a turbulent premixed flame stabilized by the streamline step, and dominated by a coherent eddy, a flame micro-structure was investigated with analyzing the signals of temperature, the ion current, and schieren phtographs simultaneously. Generally the contours of large scale coherent eddies of schlieren photographs was considered as the flame front, however, the main reaction can be occurred within the eddy as a structure of fine flamelets scale. The surrounding burned gas of flamelets could not propagate to a unburned mixture, obstructing flamelets from propagating to a unburned mixture. Consequently, it could restrain flashback. The main reaction region was found to be located at higher temperature of the burned gas rather than at maximum rms of fluctuating temperature. The peak probability of higher temperature was 6 times greater than that of lower temperature. As it was difficult to infer a flame structure from PDF distribution of the fluctuating temperature in form of bimodal shape, it should be taken into consideration with other informations related to the sensitive flame front, for instance, ion current.

Effects of a Swirling and Recirculating Flow on the Combustion Characteristics in Non- Premixed Flat Flames

  • Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.499-512
    • /
    • 2004
  • The effects of swirl intensity on non-reacting and reacting flow characteristics in a flat flame burner (FFB) with four types of swirlers were investigated. Experiments using the PIV method were conducted for several flow conditions with four swirl numbers of 0, 0.26, 0.6 and 1.24 in non-reacting flow. The results show that the strong swirling flow causes a recirculation, which has the toroidal structures, and spreads above the burner exit plane. Reacting flow characteristics such as temperature and the NO concentrations were also investigated in comparison with non-reacting flow characteristics. The mean flame temperature was measured as the function of radial distance, and the results show that the strong swirl intensity causes the mean temperature distributions to be uniform. However the mean temperature distributions at the swirl number of 0 show the typical distribution of long flames. NO concentration measurements show that the central toroidal recirculation zone caused by the strong swirl intensity results in much greater reduction in NO emissions, compared to the non-swirl condition. For classification into the flame structure interiorly, the turbulence Reynolds number and the Damkohler number have been examined at each condition. The interrelation between reacting and non-reacting flows shows that flame structures with swirl intensity belong to a wrinkled laminar-flame regime.

The Effect of Swirl Intensity on Flow and Combustion Characteristics of Flat Flame Burner (선회도가 평면화염버너의 유동과 연소 특성에 미치는 영향)

  • Jeong, Yong-Gi;Kim, Gyeong-Cheon;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.336-344
    • /
    • 2002
  • In this study, the flow and combustion characteristics of flat flame burner with twirler were investigated. There are several factors that define the characteristics of burner. Among them, the experiments was focused on swirl effect by four types of twirler in terms of flow structure, distribution of temperature and emission characteristics. In PIV(Particle Image Velocimetry) experiment, the less of swirl number, axial flow is dominant at the center. As swirl number increases, the flow develops along the burner tile and backward flow becomes stronger at center. From the combustion characteristics, as long as combustion load increases, blow-off limit was improved. But at the higher swirl number, the limit is decreased. At swirl number 0, the temperature is shown typical distribution of long flame burner. but swirl number increases, the temperature distribution is uniform in front of round tile. Therefore, the temperature distribution is coincided with flow structure. As excess air ratio increases, NO concentrations are high. But high swirl number gives rise to become low NO concentrations. The flame characteristics are comprised in wrinkled laminar-flame regime according to turbulence Reynolds number(Rel) and Damkohler number(Da).