• Title/Summary/Keyword: Wrapping controller

Search Result 2, Processing Time 0.02 seconds

Development of a Tractor Attached Round Bale Wrapper(II) - Manufacturing of proto-type bale wrapper and its performance test (트랙터 견인형 원형 베일 랩퍼의 개발(II) - 시작기의 제작 및 성능 평가 -)

  • Kim, H. J,;Park, K. K.;Myung, B. S.;Choi, J. S.;Kim, T. W.;Jang, C.;Hong, D. H.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.195-202
    • /
    • 2002
  • In order to make a winter cereal wrap silage, a tractor attached round bale wrapper was developed locally. Its specific structure and various functions were reported in the last submitted paper. In this study a control system of bale wrapper combining with the actuators of various processes was developed to make round bale wrapper compatible in the field. Also. its performance was tested by making the rye round bale. The results can be summarized as fellow. 1. The field capacity of round bale wrapping was investigated around 0.5 ha/hr, and the operating time of bale wrapper was about 3 min for each 500kg round bale 2. Plastic film which has maximum elongation rate of 796% was stretched to 150∼170% of original length and was lessened to 80∼90% of original width. 3. In the quality test of bale produced by developed bale wrapper, there was no significant changes of moisture contents if it was wrapped more than 4 layers of 25 ㎛-plastic film. 4. Also. temperature of the wrapped bale was about 33$\^{C}$ in the beginning of fermentation and was stabled to 26∼29$\^{C}$ during one month or more storage. Therefore, wrapping performance of the developed bale wrapper was properly.

Domestic Construction of a Large Thermal Vacuum Chamber for Space Environment Simulation (우주환경모사를 위한 대형열진공챔버 국산화 구축)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lew, Sang-Hoon;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • A Large thermal vacuum chamber (LTVC) for space environment simulation on large satellites was successfully developed and constructed by KARI (Korea Aerospace Research Institute) in Korea with a local company. This chamber has an effective diameter of 8 meters and depth of 10 meters, and is composed of vacuum system, thermal control system, and anti-vibration system. Temperature below $-190^{\circ}C$ is maintained over the thermal shroud wrapping a satellite under $3.7{\times}10^{-5}Pa$ ($5{\times}10^{-7}torr$) vacuum level, and optical test can be done in this chamber by seismic mass with $10^{-5}g_{rms}$ or lower vibration level. In addition, the shroud temperature can be increased up to $123^{\circ}C$ using halogen lamps. Chamber control program based on PLC (Programmable Logic Controller) could control this large thermal vacuum chamber automatically.

  • PDF