• Title/Summary/Keyword: Wrapping Material

Search Result 58, Processing Time 0.025 seconds

Evaluation of the Properties of Wrapping Material of Steel Pipe for Water Supply (수도용 강관의 도복장 재료특성 평가에 관한 연구)

  • Lee, Hyun-Dong;Lee, Ji-Eun;Kwak, Phill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.331-338
    • /
    • 2008
  • Coal-tar enamel, blown asphalt and polyethylene have been used as wrapping materials of steel pipe in Korea. Currently, every manufacturer produces wrapped steel pipes with different materials and methods, and little research has been performed to get on wrapping methods and materials. In this research, properties of wrapping material of steel pipe used for water supply have been evaluated. All of the materials tested in this work were found to meet the standard. Among the wrapping materials of steel pipe tested, blown asphalt and coal-tar enamel were reasonable in price, and their mechanical properties were excellent. The quality of the wrapped steel pipes was being melted easily in organic solvent. When coated thick, the load of the steel pipes was higher than necessary. Tensile strength of cathode exfoliation and PE 3-layer wrapping method was excellent. The pulling intensity of T-Die PE 3-layer was stronger than PE fluidized in PE wrapping method. Cathode exfoliation area was smaller than PE fluidized. Mechanical property and thermo-property of T-Die PE 3-layer were excellent and its anti-chemical property was great. Liquid epoxy can change the property of coating materials depending on the hardening condition and resin selection. Polyurethane used in this test showed a less adhesive strength with steel pipes than epoxy. Moisture absorbance rate was higher than Epoxy's, however. To utilize polyurethane as wrapping materials, basic property of the matter should be improved followed by finding the best suited coating condition. The method of PE 3-layer by extrude method appeared to be the best in this study. However, identification of other wrapping materials requires further additional tests.

A Study on Developing the Modern Fashion Design with the Application of Plasticity of Patchwork Wrapping Cloth (조각보의 조형성을 응용한 현대복식디자인 개발에 관한 연구)

  • Kim Jeong-Mee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.4 s.152
    • /
    • pp.507-518
    • /
    • 2006
  • This study aims to prove that traditional patchwork wrapping cloth can be a creative motive for modem fashion, and the application of it can be a way of expressing not only the pride in our cultural heritage but also the originality of fashion design. The analysis of the plasticity of 108 patchwork wrapping clothes has come up with the following findings: Firstly, the plane structure consists of 41 basic forms and 67 applied ones. Secondly, 61 contrast color harmony and 47 similarity color harmony. Thirdly, the fabric consists of 88 silk clothes, 19 ramie clothes, and 1 silk and ramie cloth. Fourthly, 47 unlined clothes and 61 lined ones. The study also expresses the analyzed plasticity of patchwork wrapping cloth for fashion with the following findings: Firstly, basic plane structures, contrast color harmony, silk cloth and the press flower coating technique become one piece dress to express splendid and elegant image. Secondly, application plane structures, similarity color harmony of natural dyeing method using persimmon, ramie cloth and the press flower coating and over lock technique become a jacket and a blouse to express calm and dynamic image. Thirdly, the needling and over lock technique used to patch clothes has become a desirable way to express fabric with unique surface effects. Fourthly, the press flower coating which modernizes embroidery in patchwork wrapping. cloth has become a new technique which can create high values with its extended the visual effects of the material. Fifthly, Patchwork wrapping cloth in Chosun Dynasty has now become a motive for modem fashion design to express tradition and creation.

Modern Package Design Factors Hidden in Traditional Korean Wrapping Cloth (한국전통 보자속에 은유된 현대 포장디자인 요소)

  • Kwon, Il-Hyun;Nam, Young-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.1-12
    • /
    • 2007
  • In this study, the use of wrapping cloth was studied by examining documents and drawings from the past that reflect the life of people of the time with a focus on "minbo" (a wrapping cloth used by civilians) and "gungbo" (a wrapping cloth used by the ruling class). Unlike the bag culture of industrialized society, wrapping cloth has diversity, dynamic and receptiveness to changes as well as coexistence of 2 and 3-dimension. Environment-friendliness of recyclability of the cloth used for making wrapping cloth is not found in any other traditional transportation device cultures of the world. Such polysemous elements converge into a various functions with the development of technology and raw material and allow a package design from a new perspective. This study analyzes the above factors from a package design perspective to suggest an innovative modern package design that has fusional, diverse features.

V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer (고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van-Dung;Seok, Bok-Yeol;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

Electrical Insulation Characteristics of HTS SMES (고온초전도 SMES의 절연특성)

  • Cheon Hyeon-Gweon;Choi Jae-Hyeong;Kwag Dong-Soon;Kim Hae-Jong;Seong Ki-Chul;Yun Mun-Soo;Kim Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.574-578
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by Polyimide film for HTS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under at and impulse voltage in $LN_2$ was carried.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Comparison of Packaging Methods to Prolong the Freshness and Quality of Korean Head Cabbage (Brassica rapa). (알배추 포장 방법에 따른 품질 및 선도 비교)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • The effect of packaging and storage methods in enhancing the shelf life and improving the postharvest quality of the Korean head cabbage (Brassica rapa) used for wrapping vegetables was studied at 10℃. The wrapping cabbage was packed using four types of packaging and storage materials: (A) Perforated PP film; (B) Non-perforated PP film; (C) PVC film for wrapping; and (D) non-packaged as control. The quality parameters, such as fresh appearance, weight loss, hue angle, moisture content, hardness, and SSC of wrapping cabbage were investigated. The weight loss of wrapping cabbage showed a significant difference between the one packaged with film and the non-packaged as control. The general appearance of Korean cabbage stored at 10℃ was not significantly affected by the packaging treatments. However, Korean head cabbage packaged with perforated film tend to show a better external appearance compared with those exposed to the other packaging during three weeks of storage at 10℃. The inside appearance, hue angle, moisture content, hardness, and SSC, gradually decreased during the storage period. No remarkable change in the measured items were observed in Korean cabbage packaging methods. In this experiment, the Korean cabbage packaged inside a PP film with holes, and stored at 10℃ temperature had the most desirable outcome of extending the head cabbage's shelf life and appearance quality. Results suggest that perforated packaging treatment combined with low storage temperature could be an effective method in prolonging the shelf life of Korean cabbage for wrapping vegetable.

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.