• 제목/요약/키워드: Woven sisal textile fiber reinforced composites

검색결과 2건 처리시간 0.02초

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

사이잘 섬유 강화 복합재료의 기계적 특성에 미치는 표면처리와 흡습의 영향 (Effects of Water Absorption and Surface Treatment on Mechanical Properties of Sisal Textile Reinforced Composites)

  • 김효진;서도원;박한주;전양배;임재규
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.779-786
    • /
    • 2006
  • Woven sisal textile reinforced composites were manufactured to evaluate fracture toughness, and tensile test. All specimens were immersed in water five times. All specimens are immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surface were investigated to study the failure mechanism and fiber/matrix interfacial adhesion. It is shows that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples observed poor mechanical properties such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrate a decrease in inclination with increasing cyclic times of wetting and drying fur the epoxy and vinyl-ester.