• Title/Summary/Keyword: Worsted fabric

Search Result 25, Processing Time 0.017 seconds

Comparison of Physical Properties on the Worsted Fabrics Woven with Rapier and Air Jet Looms(I) - Characteristics of tensile & bending properties - (Air Jet와 Rapier 직기 특성이 모직물의 역학적 특성에 미치는 영향( II) - 인장특성, 굽힘특성에 관하여 -)

  • 박수현;김승진;홍성철
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.337-343
    • /
    • 2000
  • In this study, the five harness satins are weaved in rapier loom and air-jet loom each using the pure wool Nm 2/72, also the physical characteristics of fabrics that are produced in these weaving machinery in same condition are measured by using the KES-FB system. The results of analysis and comparison on each fabric are presented by classifying items, that is to say, the tensile, bending properties. The results we as follows ; The extensibility of grey fabric woven by rapier in the weft direction is larger than that by air-jet loom. The variation of bending property of grey fabric woven by rapier in the weft direction is more irregular than that by air-jet loom. However, these properties are similar both rapier and air jet fabrics.

  • PDF

Classification of Apparel Fabrics according to Rustling Sounds and Their Transformed Colors

  • Park, Kye-Youn;Kim, Chun-Jeong;Chung, Hye-Jin;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.23-28
    • /
    • 2002
  • The purpose of this study was to classify apparel fabrics according to rustling rounds and to analyze their transformed colors and mechanical properties. The rustling sounds of apparel fabrics were recorded and then transformed into colors using Mori's color-transforming program. The specimens were clustered into five groups according to sound properties, and each group was named as ‘Silky’,‘Crispy’,‘Paper-like’,‘Worsted’, and ‘Flaxy’, respectively. The Silky consisted of smooth and soft silk fabrics had the lowest value of LPT, $\Delta$f, ARC , loudness(B) and sharpness(z). Their transformed colors showed lots of red portion and color counts. The Crispy with crepe fabrics showed relatively low loudness(z) and sharpness(B), but diverse colors and color counts were appeared. The Paper-like showed the highest value of LPT, $\Delta$f and loudness(z). The Worsted composed of wool and wool-Like fabrics showed high values of LPT, $\Delta$f, loudness(z) and sharpness(B). The transformed rotors of the Paper-like and Worsted showed the blue mostly but color counts were less than the others. The Flaxy with rugged flax fabric had the highest fluctuation strength, and their transformed colors showed diversity.

  • PDF

Effect of Fabric Sound and Touch on Human Subjective Sensation

  • Cho, Gilsoo;Casali, John G.;Yi, Eunjou
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.196-202
    • /
    • 2001
  • In order to investigate the relationship between subjective sensation for fabric sound and touch and the objective measurements, eight different apparel fabrics were selected as specimens. Sound parameters of fabrics including level pressure of total sound (LPT), level range (ΔL), and frequency differences (Δf) and mechanical properties by Kawabata Evaluation System (KES) were obtained. For subjective evaluation, seven aspects of the sound (softness, loudness, pleasantness, sharpness, clearness, roughness, and highness) and eight of the tough (hardness, smoothness, fineness, coolness, pliability, crispness, heaviness, and thickness) were rated using semantic differential scale. Polyester ultrasuede was evaluated to sound softer and more pleasant while polyester taffeta to sound louder and rougher than any other fabrics. Wool fabric such as worsted and woolen showed similar sensation for sound but differed in some touch sensation in that woolen was coarseast, heaviest, and thickest in touch. In the prediction model for sound sensation, LPT affected positively subjective roughness and highness as well as loudness, while ΔL was found as a parameter related positively with softness and pleasantness. Touch sensation was explained by some of mechanical properties such as surface, compressional, shear, and bending properties implying that a touch sensation could be expressed by a variety of properties.

  • PDF

Change of Porosity and Water Vapour Transport Properties of Wool Fabrics by the Change of Moisture Regain and Fabric Structure (모직물의 수분율 변화와 구조에 따른 기공도 및 수분전달 특성변화)

  • 김동옥;나미희;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.820-828
    • /
    • 1999
  • The purpose of this study was to investigate the changes of pore area and water vapour transport by the changes of moisture regain and fabric structure of wool fabrics, As specimens 4 worsted wool fabrics were used. The pore area were measured by image analysis method and dinamic vapour transport and water reisitance was determined by clothing-environment-body modelling system. The pore area was changed by the moisture regain of wool fabrics. The change of pore area was influenced by the yarn twist thread count and cover factor and the weave type. The water vapour transport was changed by the moisture regain. The change of water vapour transport was influenced by the change of pore aree which was determined by image analysis.

  • PDF

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.