• Title/Summary/Keyword: Worm Simulation

Search Result 51, Processing Time 0.024 seconds

Design and Simulation of Meshing of New Type of Worm-Gear Drive with Localized Contacts

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.408-417
    • /
    • 2000
  • The design and simulation of meshing of a single enveloping worm-gear drive with modified surfaces is presented. Generally worm-gear is generated by the hob which is identical to the worm. This process guarantees the conjugation between the worm and the gear but results in a line contact at every instant which is very sensitive to misalignment. The localization of bearing contact is necessary to reduce the sensitivity of the worm-gear drive to misalignment. Practically this localization is achieved by application of an oversized worm type hob to cut the worm-gear. The oversized hob approach is very practical and effective to localize bearing contact but can not provide the conjugation between the worm and the modified worm-gear. This work proposes an analytical procedure to make the worm surface conjugate to the worm-gear which is cut by the oversized hob. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors, the contact ratio and the principle curvatures. The developed approach has been applied for ZK type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example.

  • PDF

Development of form rolling technology for high precision worm using the rack dies of counter flow type (Counter Flow 방식의 랙 다이를 이용한 고정밀도 Worm 전조기술 개발)

  • 고대철;박준모;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1861-1864
    • /
    • 2003
  • The objective of this study is to suggest the form rolling technology to produce high precision worm. Rack dies and roll dies are usually used to roll parts with worm teeth. The form roiling processes of worm shaft used as automotive part using the rack dies of counter flow type and the roll dies are considered and simulated by the commercial finite element code, DEFORM-3D. It is also important to determine the initial blank diameter in form rolling because it affects the quality of thread. The calculation method of the initial blank diameter in form rolling is suggested and it is verified by FE-simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The results of simulation and experiment in this study show that the from rolling process of worm shaft using the rack dies is decidedly superior to that using rolling dies from the aspect of the surface roughness and the profile of worm.

  • PDF

Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type (Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발)

  • Ko Dae-Cheol;Lee Jung-Min;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Side Milling (워엄 스크루 가공용 사이드 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for side milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Planetary Milling (워엄 스크루 가공을 위한 플래내터리 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.47-54
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for planetary milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

Simulation for the Propagation Pattern Analysis of Code Red Worm (Code Red 웜 전파 패턴 분석을 위한 시뮬레이션)

  • Kang, Koo-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.155-162
    • /
    • 2006
  • It was well known that how much seriously the Internet worm such as the Code Red had an effect on our daily activities. Recently the rapid growth of the Internet speed will produce more swift damage us in a short term period. In order to defend against future worm, we need to understand the propagation pattern during the lifetime of worms. In this paper, we analyze the propagation pattern of the Code Red worm by a computer simulation. In particular, we show that an existing simulation result about the number of infectious hosts does not match the observed data, and then we introduce a factor of revised human countermeasures into the simulation. We also show the simulation results presenting the importance of patching and pre-patching of the Internet worm.

  • PDF

A Hybrid Modeling Method for RCS Worm Simulation (RCS 웜 시뮬레이션을 위한 Hybrid 모델링 방법)

  • Kim, Jung-Sik;Park, Jin-Ho;Cho, Jae-Ik;Choi, Kyoung-Ho;Im, Eul-Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.43-53
    • /
    • 2007
  • Internet becomes more and more popular, and most companies and institutes use web services for e-business and many other purposes. With the explosion of Internet, the occurrence of cyber terrorism has grown very rapidly. Simulation is one of the most widely used method to study internet worms. But, it is quite challenging to simulate very large-scale worm attacks because of various reasons. In this paper, we propose a hybrid modeling method for RCS(Random Constant Spreading) worm simulation. The proposed hybrid model simulates worm attacks by synchronizing modeling network and packet network. So, this model will be both detailed enough to generate realistic packet traffic, and efficient enough to model a worm spreading through the Internet. Moreover, our model have the capability of dynamic updates of the modeling parameters. Finally, we simulate the hybrid model with the CodeRed worm to show validity of our proposed model for RCS worm simulation.

IARAM: Internet Attack Representation And Mapping Mechanism for a Simulator (IARAM: 시뮬레이터를 위한 인터넷 공격 표현 및 맵핑 기법)

  • Lee, Cheol-Won;Kim, Jung-Sik;Kim, Dong-Kyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.89-102
    • /
    • 2008
  • Internet becomes more and more popular, and most companies and institutes use web services for e-business and many other purposes. With the explosion of Internet, the attack of internet worm has grown. Simulation is one of the most widely used method to study internet worms. But, it is quite challenging to simulate very large-scale worm attacks because of various reasons. By this reason, we often use the modeling network simulation technique. But, it also has problem that it difficult to apply each worm attacks to simulation. In this paper, we propose worm attack representation and mapping methods for apply worm attack to simulation. The proposed method assist to achieve the simulation efficiency. And we can express each worm attacks more detail. Consequently, the simulation of worm attacks has the time-efficiency and the minuteness.

Motion Control of Inch-worm (이송자벌레의 운동제어)

  • Yun, Jae-Heon;Kim, Yeong-Sik;Kim, In-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.179-185
    • /
    • 2002
  • Solid state deformation of PZT is effective for the micron scale displacement. Inch-worm gets large linear displacement by incrementally summing displacements of PZT actuators. Dynamic stiffness of inch-worm is generally low compared to its driving condition due to the small size and light weight of inch-worm. Mechanical vibration induced by low stiffness may degenerate the motion accuracy of the inch-worm. In this paper, dynamic characteristics of the inch-worm are modeled by using the frequency domain curve fitting based on the experimental frequency response function. SMC (sliding mode control) is examined for motion control of the inch-worm. Simulation and experimental results show that the inch-worm with SMC scheme is feasible for the precise displacement device.

Passive Benign Worm Propagation Modeling with Dynamic Quarantine Defense

  • Toutonji, Ossama;Yoo, Seong-Moo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.96-107
    • /
    • 2009
  • Worm attacks can greatly distort network performance, and countering infections can exact a heavy toll on economic and technical resources. Worm modeling helps us to better understand the spread and propagation of worms through a network, and combining effective types of mitigation techniques helps prevent and mitigate the effects of worm attacks. In this paper, we propose a mathematical model which combines both dynamic quarantine and passive benign worms. This Passive Worm Dynamic Quarantine (PWDQ) model departs from previous models in that infected hosts will be recovered either by passive benign worms or quarantine measure. Computer simulation shows that the performance of our proposed model is significantly better than existing models, in terms of decreasing the number of infectious hosts and reducing the worm propagation speed.