• Title/Summary/Keyword: Workspace Planning

Search Result 65, Processing Time 0.022 seconds

A Study on Rendezvous Point between the Mobile Robot and Predicted Moving Objects (경로예측이 가능한 이동물체와 이동로봇간의 Rendezvous Point에 관한 연구)

  • Youn, Jung-Hoon;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.84-86
    • /
    • 2001
  • A new navigation method is developed and implemented for mobile robot. The mobile robot navigation problem has traditionally been decomposed into the path planning and path following. Unlike tracking-based system, which minimize intercept time and moved mobile robot distance for optimal rendezvous point selection. To research of random moving object uses algorithm of Adaptive Control using Auto-regressive Model. A fine motion tracking object's trajectory is predicted of Auto-regressive Algorithm. Thus, the mobile robot can travel faster than the target wi thin the robot's workspace. The can select optimal rendezvous point of various intercept time.

  • PDF

A Collision Avoidance Algorithm for Two Mobile Robots with Independent Goals in Skeleton Map (골격지도에서 개별 목표를 갖는 두 이동로봇의 충돌 회피 알고리즘)

  • Yang Dong-Hoon;Hong Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.700-705
    • /
    • 2006
  • This paper proposes a collision avoidance algorithm for two mobile robots with independent goals in a same workspace. Using skeleton map, an environment is presented as a graph consisting of nodes and arcs. Robots generate the shortest set of paths using the combination of objective functions of the two robots. Path for collision avoidance of a robot can be selected among three class; the shortest path, detour, paths with a waiting time at safety points around crossing points. Simulation results are presented to verify the efficiency of the proposed algorithms.

Design of a Cable Array Robot System (Cable Array Robot 시스템 설계)

  • Sheen, Dong-Mok;Lee, Youn-Am
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.375-380
    • /
    • 2011
  • Loading/unloading at sea is necessitated as larger container ships are being used. It is also unavoidable to load/unload at sea during military operations. An experimental cable array robot system, which can be used for loading/unloading at sea, consisting of four cables operated by four motors is designed and built. Even though it has simple structure, it has a large pay-load/robot-weight ratio, flexibility and wide workspace and can be easily built at low cost. In order to plan and control the paths of end-effector, two interpolation methods are introduced and compared. Since the robot is entirely based on cable tension, an analysis of tension is also presented for monitoring and planning purpose.

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.

A Study on the Space Area Guideline of Clinical Laboratory in Korea - Focused on Laboratory Case Studies (국내 종합병원 진단검사의학과의 면적산정 방법에 대한 연구 - 검사실 사례조사를 중심으로)

  • Kim, Youngaee;Song, Sanghoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.2
    • /
    • pp.39-47
    • /
    • 2020
  • Purpose: Clinical laboratory of hospital has been demanded to extension or relocation regarding with the test number increase and analyzer development. Space area criteria per test numbers, lab functions, hospital bed and lab staffs are needed for draft space programing. So, the purpose of this study is to provide the space area guideline of clinical laboratory for space calculation in planning and design the spatial environment. Methods: Literature review has been used in checking the standards and guidelines. And questionnaire surveys to laboratory supervisors in hospitals have been conducted for the data collection. 60 answers have been analysed statistically by MS Excel program. Results: The result of this study can be summarized into three way calculations. The first one shows that the basic standard workspace and distance is applied in lab design. The second one shows that average space area criteria resulted from case studies is applied by 19㎡ per one staff, 0.9~1.0㎡ per one bed, and lastly linear length calculation of workbenches and analyzers on the bench top and floor mount, is multiplying it by the sum of the counter depth plus aisle width. Implications: In updating the space area calculation guidelines, it is necessary to cooperate with medical staffs and designers.

A Study on the Visual Interaction of Workers under the Effect of Office Layout (사무공간 레이아웃에 따른 근무자의 시각적 교류에 관한 연구)

  • Yoo Uoo-Sang;Choi Yoon-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to explore the relationship between the spontaneous interactions of office workers and their workspace layout. The spontaneous interactions are captured by the measures regarding the 'visual interaction' between workers in their desk layouts. The measures of visual interaction then are examined by means of the office layout or desk arrangement and the properties of work patterns according to the departments, such as general affairs, sales, research and development, and planning. The study finds four types of office layout ; Type 1 with low visual interaction between workers and high intensity of visual interaction, Type 2 with high visual interaction between workers and high intensity of visual interaction, Type 3 with low visual interaction between workers and low intensity of visual interaction, and Type 4 with high visual interaction between workers and high intensity of visual interaction. The study shows that the patterns of unintentional interaction between workers varies according to the property of work and office arrangement and it also argues that the patterns of office layout are different according to properties of work.

A CAD/CAM system for designing robotic painting line (도장공정의 로보틱자동화를 위한 설계 지원 CAD/CAM 시스템)

  • 서석환;조정훈;강대호;전치혁;박춘열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1129-1135
    • /
    • 1993
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implementation details(such as robot selection, accessory design, and spatial layout) together with operation details, a computerized method should be sought. However, any conventional robotic design system and off-line programming system cannot accomodate such a need. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL(Simulation Package for Robotic Painting Line) users can design the painting objects(via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workspace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS). By iterative design and evaluation procedure, a feasible and efficient robotic design can be attained. As the developed system has motion planning and analysis features, it can be also used as an off-line robot programming system in operation stage. Including the details of each module, this paper also presents a case study made for an actual painting line.

  • PDF

Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept (反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃)

  • 정낙영;서일홍;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A collision-free trajectory planning algorithm using an iterative learning concept is proposed for dual robot arms in a 3-D common workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also that the operating time is near-minimal. To show the validity of the proposed algorithm, a numerical example is presented based on two planar robots.

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.