• Title/Summary/Keyword: Workpieces

Search Result 144, Processing Time 0.024 seconds

Simulation on Heterogeneous Deformation Behavior of AA1100 During Multi-axial Diagonal Forging Using Finite Element Analysis (유한요소해석을 이용한 다축대각단조 시 AA1100합금의 불균일 변형 거동에 관한 모사)

  • Kim, M.S.;Lee, S.E.;Lee, S.;Jeong, H.T.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.98-104
    • /
    • 2019
  • The present study numerically simulates the deformation heterogeneity developed in AA1100 during multi-axial diagonal forging (MADF) using finite element analysis (FEA). Diagonal forging type consisting of diagonal forging (DF) and return-diagonal forging (R-DF) proved to be relatively beneficial compared to plane forging type which includes plane forging (PF) and return-plane forging (R-PF) for minimizing the non-uniformity of deformation developed in workpieces. Simulation of the effective strain generated in workpieces during the two types of forging was done using 3-D FEA. FEA shows the effect of friction coefficient on the deformation behavior on workpieces. The simulation of 2 types forging with different friction coefficients revealed that the magnitude of barreling effect and strain heterogeneity in workpieces increases with an increase in the friction coefficient.

A Measurement Method to Compromise Surface Error in Machined Workpieces (평면 오차 보정 가공을 위한 측정 방법에 관한 연구)

  • 장문주;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.409-412
    • /
    • 2002
  • This paper presents a measurement method to compromise surface error in surface machining processes. In order to compromise the surface error in machining process, on-machine measurement is essential. There are two kinds of on-machine measurement methods available to measure the surface errors in flat workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are inevitably engaged in both methods. This paper proposes a new idea to measure the surface error for error compensation. The measurement system consists of a laser, a CCD camera and processing system, a carrier system with a stylus, and some optical units. The experimental results show that the proposed method is useful to compensate the surface errors of machined workpieces.

  • PDF

A Study on Wear Mechanism of CBN Ball Endmills (CBN 볼엔드밀의 마모메카니즘에 관한 연구)

  • Park, S.W.;Lee, K.W.;Lee, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.121-126
    • /
    • 1997
  • The use of CBN tool material has been greatly increased because of the superior metal cutting performance for the machining of hardened steel. This paper presents some experimental results on the ball endmiling of harened steels. Three different hardnesses of STD11 workpieces were machined using CBN ball endimills, and the machining characteristics including cutting forces tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is caused by the difference of microstructure of each workpieces.

  • PDF

Laser Preheating Method for Three-Dimensional Laser Assisted Milling (3차원 레이저 보조 밀링을 위한 레이저 예열 방법에 관한 연구)

  • Oh, Won-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1031-1037
    • /
    • 2015
  • Laser assisted machining (LAM) is an effective method with which to effectively process difficult-to-cut materials. Simple machining processes, such as turning and linear tool paths, have been studied by many researchers. But, there are few research efforts on LAM workpieces using threedimensional shapes because of difficulties controlling the laser heat on workpieces with inclined angles or curved surfaces. Two methods for machining three-dimensional workpieces are proposed in this paper. The first is that the heat source shape and laser focal length are maintained using an index table. Second, a rotary type laser module is controlled using an algorithm to move the laser heat source in all directions. This algorithm was developed to control the rotary type laser module and the machine tool simultaneously. These methods are verified by a CATIA simulation.

Cutting Characteristics of CBN Ball Endmills for STD-11 of Various Hardnesses (STB-11 경도변화에 따른 CBN볼 엔드밀의 절삭특성)

  • 최상우;이기우;이세균;이종찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1078-1082
    • /
    • 1997
  • The use of CBN tool material has been greatil increased because of the superior metal cutting performance for the machining of hardened steels. This paper presents some experimental results on the ball endmilling of hardened steels. Three different hardnesses of STB-11 workpieces were machined using CBN ball endmills, and the machining charteristics including cutting forces, tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is cause by the difference of microstructure of each workpieces.

  • PDF

자동선반을 위한 공작물 장탈착로봇의 개발

  • 고경철;김용일;권영두;정종기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.364-368
    • /
    • 1992
  • The conventional loading process of workpieces for a CNC lathe is performaed either by human or by a general robot. It is not suitable for a general robot to load workpieces because of high price and inefficiency. Starting from the description of the environment around CNC lathes and the analysis ofloading process, we have developed the task-oriented loading manipulator. The characteristics of a loading manipulator are the following: to load/unload heavy workpieces, to decrease the whole porcess time. The air-chuck to load heavy workpiece has high clamping force and light weight. A loading manipulator has accomplished both the integration of independent automation techniques and cost-down effect of product. A loading manupulator developed in this project has been designed for general loading process. The loading manipulator is capable of carrying heavy payload with respect to weight of robot in short cycle time.

The Surface Characteristics of Workpiece by Wear of Wheel (숫돌 마멸량에 따른 연삭가공물의 표면특성)

  • Ha, M.K.;Kwak, J.S.;Kwak, T.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The surface roughness is one of important parameters to obtain the high quality of products in grinding process. In precision components, it's level must be limited to a certain range. This study evaluated experimentally grinding characteristics of workpieces in the surface grinding process. The grinding forces were obtained to compare with the grindability of workpieces such as STD11, STS304 and STB2. The surface roughnesses on various workpieces were measured according to increasing the feed and the depth of cut. In addition, the wear amount of wheels according to the number of grinding were obtained. Also the grinding wheel and the ground surface were observed with a microscopic instrument.

  • PDF

Modeling of the Centerless Through-feed Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1036-1043
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless through-feed grinding process is described. The length of the contact line and the magnitude of the grinding force between the grinding wheel and workpieces, vary with the change in the axial location of the current workpiece during grinding. Thus, a new coordinate system and a grinding force curve of previous and/or following workpieces are introduced to treat the axial motion. Experiments and computer simulations were carried out using four types of cylindrical workpiece shapes. To validate this model, simulation results are compared with the experimental results.

The Surface Characteristics of Workpiece by Wear of Wheel (숫돌 마모량에 따른 연삭가공물의 표면특성)

  • 곽태경;곽재섭;하만경;이재경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.332-335
    • /
    • 2001
  • The surface roughness is one of the important parameters to evaluate the quality of products. Its level must be limited to a certain range in the precision components. This paper deals with grinding characteristics of workpieces by the wear amount of wheels in the surface grinding process. The surface roughness was measured according to the feedrate and the depth of cut with respect to the various workpieces. In addition, the wear amount of wheels according to the number of grinding pieces was obtained.

  • PDF

Structural Analysis and Performance Evaluation of Quick Change Power Chuck for Lathe Operations (선반용 급속 교환 파워 척의 구조해석 및 성능평가)

  • 유중학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.90-95
    • /
    • 1999
  • Chucking for workpieces is very important for productivity and efficiency in lathe operations. In point of productivity top jaws of the chuck should be changed as quickly as possible in order to reduce idle times wherever workpieces are regripped. A quick change power chuck which can change top jaws quickly by using a jaw change handle without any assembly/disassembly processes of screws is analyzed for this study. strength and stiffness of top jaws by centrifugal force are considered for the design. Structural analysis for the chuck is executed and the finite element method is introduced using MSC/NASTRAN software. Also, the performance of the chuck is evaluated by experiments.

  • PDF