• 제목/요약/키워드: Workload generation

검색결과 32건 처리시간 0.017초

다양성을 지원하는 그래프 데이터베이스 벤치마킹 시스템 (Graph Database Benchmarking Systems Supporting Diversity)

  • 최도진;백연희;이소민;김윤아;김남영;최재용;이현병;임종태;복경수;송석일;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.84-94
    • /
    • 2021
  • 객체 간의 관계를 표현하기 위해 정점과 간선으로 구성된 그래프 데이터를 효율적으로 저장하고 질의 처리하기 위한 그래프 데이터베이스가 개발되었다. 그래프 데이터베이스는 질의 유형이 기존 NoSQL 데이터베이스와 매우 다른 특성을 보이기 때문에 그래프 데이터베이스의 성능을 검증하기 위해서는 그래프 데이터베이스에 알맞은 벤치마킹 도구가 필요하다. 본 논문에서는 그래프 입력과 질의에 대한 다양성을 지원하는 효율적인 그래프 데이터베이스 벤치마킹 시스템을 제안한다. 제안하는 시스템은 그래프 데이터베이스에 대한 벤치마킹을 테스트하기 위해서 OrientDB를 활용한다. 입력 그래프와 질의 그래프의 다양성을 지원하기 위해서 기존 그래프 데이터 생성 도구인 LDBC를 이용한다. 벤치마킹 결과 분석을 통해 제안하는 기법의 타당성 및 실효성을 입증한다. 성능 평가 결과 제안하는 시스템은 사용자 정의 가능한 가상 그래프 데이터가 생성이 가능하며, 생성된 그래프 데이터를 기반으로 벤치마킹이 가능함을 보였다.

유전 알고리즘을 이용한 임베디드 프로세서 기반의 머신러닝 알고리즘에 관한 연구 (A Study on Machine Learning Algorithms based on Embedded Processors Using Genetic Algorithm)

  • 이소행;석경휴
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.417-426
    • /
    • 2024
  • 일반적으로 머신러닝을 수행하기 위해서는 딥러닝 모델에 대한 사전 지식과 경험이 필요하고, 데이터를 연산하기 위해 고성능 하드웨어와 많은 시간이 필요하게 된다. 이러한 이유로 머신러닝은 임베디드 프로세서에서 실행하기에는 많은 제약이 있다.본 논문에서는 이러한 문제를 해결하기 위해 머신러닝의 과정 중 콘볼루션 연산(Convolution operation)에 유전 알고리즘을 적용하여 선택적 콘볼루션 연산(Selective convolution operation)과 학습 방법을 제안한다. 선택적 콘볼루션 연산에서는 유전 알고리즘에 의해 추출된 픽셀에 대해서만 콘볼루션을 수행하는 방식이다. 이 방식은 유전 알고리즘에서 지정한 비율만큼 픽셀을 선택하여 연산하는 방식으로 연산량을 지정된 비율만큼 줄일 수 있다. 본 논문에서는 유전 알고리즘을 적용한 머신러닝 연산의 심화학습을 진행하여 해당 세대의 적합도가 목표치에 도달하는지 확인하고 기존 방식의 연산량과 비교한다. 적합도가 충분히 수렴할 수 있도록 세대를 반복하여 학습하고, 적합도가 높은 모델을 유전 알고리즘의 교배와 돌연변이를 통해 다음 세대의 연산에 활용한다.