• Title/Summary/Keyword: Working direction

Search Result 557, Processing Time 0.035 seconds

A Study on the Truing of Diamond Wheel for Micro V-shaped Groove Grinding (마이크로 V홈 연삭가공을 위한 다이아몬드숫돌의 V형상 트루잉에 관한 연구)

  • Lee, Joo-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.27-33
    • /
    • 2005
  • This study deals with the truing of diamond wheel fur the manufacture of micro v-shaped grooves with fine sharp edges in the grinding. Fine micro v-shaped grooves are key components to fabricate LGP(light guide plate), optical fiber connector and so on. Conventional v-shaped groove methods such as etching and lithography are difficult to make grooves with accuracy and cutting by lathe is difficult to select target materials. Therefore, as a preliminary stage to developing the grinding technology that will be expected fabrications for micro 3-dimensional structure of high effectivity and accuracy and freed up the restrictions of machinability to the materials for micro v-shaped grooves, truing is carried out with resin bond diamond wheel and electroforming diamond wheel using a cup-type truer. From the experimental results, it is found that the effects according to working direction of the cup-type truer and the restrainable methods of plastic deformation that is generated at wheel edge are examined. As a result, fine micro v-shaped diamond wheel was obtained, which are applicable to micro grinding for optical devices.

A Study on the Statistical Analysis of the Flow Characteristics of Droplet in the Cross Region of Twin Spray (이중분무 교차지역에서의 액적유동특성의 통계학적 분석에 관한 연구)

  • 조대진;윤석주;최태민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • This study investigated mainly on the flow characteristics of a droplet in the cross region of twin spray. The velocities of the droplet were measured along the axial and radial direction, and the flow characteristics of the droplet were statistically analyzed. For the statistical analysis, the probability density of the turbulent components has been studied, and then the Reynolds shear stress, the skewness and the flatness factors were calculated, and compared with the Gaussian value. Two pressure swirl stomizers were used for the twin spray system and kerosene was employed as the working liquid. 2-D PDA(particle dynamic analyzer) was used for the purpose of the measurement of droplet size and velocities. As a result, it was found that (1) the droplets collision was taken place strongly in the cross region. So, a large momentum loss of droplets due to the loss of natural movement direction was occurred, and momentum loss of radial direction was greater than that of axial direction. (2) The axial direction skewness factor approached to zero like the Gaussian distribution in the cross region of twin spray. (3) In the cross region of twin spray, the fluctuation instability of droplet was increased because of the development of the turbulence characteristics due to the droplet collision.

A Study of Heat Transfer during Freezing Process of Water in a Vertical Cylinder - Comparison of thermal storage performance on the working fluid direction - (수직원통형 축열조내 물의 응고과정시 열전달에 관한 실험적연구 - 작동유체의 유동방향에 따른 열저장성능 비교 -)

  • Heo, K.;Kim, Y.K.;Kim, Y.J.;Kim, J.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.77-90
    • /
    • 1995
  • An effective heat transfer during freezing process was proposed in the vertical cylinder to improve the effectiveness of the heat storage. Vertical cylinder was filled with pure water in order to investigate ice-shape, temperature distribution of the liquid, temperature distribution of the cylinder tube wall, total heat storage per unit mass in the test section under the two experimental conditions; inlet temperature of working fluid is constant($-10^{\circ}C$) and inlet direction of working fluid is either upward flow or downward. Both the mean temperature of the liquid and temperature difference of cylinder tube wall in the upward were lower than those in the downward. In case that the initial temperature of water was $7^{\circ}C$ and $4^{\circ}C$, the shape of ice layer in the upward was more uniform than that in the downward. In case of $1^{\circ}C$, the shape of ice layer is formed by inlet direction of working fluid. Finally, time-varying total heat energy stored in the water in the upward was higher than that in the downward.

  • PDF

A Study on The 5-Axis CNC Machining of Impeller (임펠러 5-축 CNC 가공에 관한 연구)

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.19-26
    • /
    • 1997
  • The manufacture of an impeller typically requires the 5-axis CNC machining, since the impeller is usually under working conditions such as high speed, high temperature, and high pressure. Thus, this study contributes to development of an exclusive CAM system for effective 5-axis CNC machining of a ruled surface type impeller. In this study, the sampled impeller is made of blades and a body and the blade consists of ruled surfaces between hub curve and shroud curve. In the post processing for 5-axis NC part program, the cutter axis direction vector is the straighten vector on ruled surface. The position of ball center in ball end mill cutter is decided on the interference check between the cutter and body surface of impeller using with the modified z-map method that z-axis is the same of cutter axis direction vector. The exclusive CAM system for an impeller developed in this study was very effective for designs and 50-axis machining of a ruled surface type impeller.

  • PDF

Spectroscopic Measurement of Temperature Distribution in Some Plasma Jets (분광학적 방법에 의한 Plasma Jet의 온도분석 측정)

  • 전춘생;박용관;임명선
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.104-110
    • /
    • 1977
  • This paper investigates temperature distribution of plasma jets which used argon gas, and nitrogen gas mixed with argon as working fluids in spectroscopic method, and studies correlations between them main results are as follows; 1) The temperature at the center of plasma jet increases with are current and gas flow, and decreases with magnetic flux density along the axial direction. 2) The changing rate of temperature of plasma jet in the radial direction decreases rapidly beyond 2mm from central axis. 3) Temperature drop rate of plasma jet in the central axis direction appears most apparant beyond 13mm above the nozzle exit. 4) When argon gas mixed with a small amount of nitrogen, plasma temperature increases at same are current compared with the case of argon gas only.

  • PDF

A Study on Effects of the Residual Stresses Around Cold Working Hole of the Aircraft Structure (항공기 구조물의 체결용 HOLE을 COLD WORKING 할때 생성되는 잔류응력의 영향연구)

  • 강수준;최청호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-109
    • /
    • 1999
  • The objective of this research is to study effects of the residual stresses on the crack growth and the life of the structure, caused by cold working around the hole of the aircraft structure which will be jointed by rivets and bolts, etc. The compensated Morrow's equation, by experimental data from the materials AL7075-T6 and AL2024-T3, is suggested to calculate the values of the fatigue life prediction of the structure. Also, the compensated Forman's equation, by experimental data from a material AL7075-T6, is suggested to calculate the values of the crack growth prediction of the structure. It is founded that the calculated values from the suggested equations are almost close to the known values of the fatigue life prediction and the crack growth prediction. It is shown that this paper, associated with an initial research on the effects of residual stresses around hole, gives a direction to study the problem at the aircraft maintenance field.

  • PDF

Experiment for Seated Human Body to Vertical/Fore-and-aft/Pitch Excitation (착석자세 인체의 상하/전후/피치 가진 시험)

  • Kim, Jong-Wan;Kim, Ki-Sun;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.656-660
    • /
    • 2009
  • Various dynamic models of seated posture human body have been developed because the importance about the ride comfort assessment of vehicles is highly emphasized from day to day. The dynamic models of human body make possible the simulation of ride comfort assessment by applied to the vehicle dynamic model. Recently, the importance of ride comfort is also regarded to working vehicles such as excavators and the research of the ride comfort assessment for working vehicle is required. Only vertical vibration dominantly occurs on the seat of the private car driving with constant velocity. In contrast, vertical/fore-and-aft/pitch vibration seriously occurs on the seat of the working excavator. So, the dynamic models of seated human body applied to working vehicles should describe the dynamic characteristics for vertical/fore-and-aft/pitch direction. In this paper, the dynamic characteristics of seated human body are represented as apparent inertia matrix. The apparent inertia matrix is obtained by the vertical/fore-and-aft/pitch excitation of seated human body. 6 resonance frequencies are observed in apparent inertia matrix. This result can be applied to develop the dynamic model for seated posture human body.

  • PDF

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

An Experimental Study on the Heat Transfer Characteristics during Outward Melting Process of Ice in a Vertical Cylinder(comparison of thermal performance on the flow direction of working fluid) (수직원통형 빙축열조내 얼음의 외향용융과정시 전열특성에 관한 실험적 연구(작동 유체의 유입 방향에 따른 비교))

  • Kim, D.H.;Kim, D.C.;Kim, I.K.;Kim, Y.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 1996
  • This study presents experimental results of heat transfer characteristics of P.C.M. during outward melting process in a vertical cylinder. The experiment was carried out in six conditions, i. e., three different inlet temperature($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$) and two directions of working fluid(upward and downward). Melting P.C.M. produced a bell-shaped phase change interface. When the inlet temperature was $7^{\circ}C$, the lower region remained at $4^{\circ}C$ until the temperature of upper region reached $4^{\circ}C$. This was due to the state of maximum density of the lower region. When the direction of the working fluid in the case of $7^{\circ}C$, inlet temperature, was upward, the rate of melting and the total melting energy were higher than when it's direction was downward. But the rate of melting and the total melting energy appeared higher value as it's direction was downward when the inlet temperature is $4^{\circ}C$ and $1^{\circ}C$.

  • PDF

Experimental Investigation of Working Fracture in Silicon Steel Strip Occurring Due to Change in Roll-Gap Profile in Cold Rolling (실리콘 강판 냉간압연 중 발생하는 롤갭 형상변화에 의한 가공파손에 관한 실험적 분석)

  • Byon, Sang-Min;Lee, Jae-Hyeon;Kim, Sang-Rok;Choi, Hyeon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1299-1304
    • /
    • 2010
  • We examined the working fracture behavior of a silicon-steel strip caused by deformation deviation by performing a pilot rolling test. The deformation deviation resulted in the edges (or center portion) of the strip being stretched and the other parts being compressed in the rolling direction; this was because of different degrees of deformation in these parts. We designed roll grooves shape to reflect the role of roll bending, which generates waviness in the strip in an actual cold rolling process, into the pilot rolling test. The material used in the rolling test was highsilicon steel (about 3%). The results of the test showed that the type of fracture in the strip specimen varied with the magnitude of the deformation deviation. The tensile stress produced at the strip edges because of the center waviness in the rolling direction was a crucial factor that resulted in edge cracking and a zigzag-shaped fracture at the center.