• Title/Summary/Keyword: Workflow Model Analysis

Search Result 63, Processing Time 0.03 seconds

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.

Social Business in An Emerging Economy: An Empirical Study in Bangladesh

  • CHOWDHURY, Fatema Nusrat;MUSTAFA, Jasia;ISLAM, K.M. Anwarul;HASAN, K.B.M. Rajibul;ZAYED, Nurul Mohammad;RAISA, Tahsin Sharmila
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.931-941
    • /
    • 2021
  • The study focuses on the relationship between SB, corporate social responsibility (CSR), and the emerging economy. Thereafter it highlights the types, principles, and funding cycle of SB with the evidence from Grameen Bank, which is a globally well-recognized microfinance venture in Bangladesh established by the Nobel Laureate Dr. Muhammad Yunus. This study employs qualitative analysis to illustrate an architectural overview of the SB model by collecting secondary data from various publications related to the topic and published data of Grameen Bank. Finally, this paper illustrates the SB model along with specified characteristics, systematic framework, and main approaches for sustainable context, which could be applied as a conceptual framework for SB in any context of the emerging economy. The findings of this study suggest that the SB model is the workflow having a hierarchy of five phases namely need identification, goal setting, solution-based business plan, business plan assessment, and business plan execution. Analyzing a range of social business interventions in a developing country, Bangladesh, through the lens of five key aspects demonstrates that social business is the most efficient way to sustainably maximize the social benefits and minimize specific social issues poverty of the people affected.

Applications of Metabolic Modeling to Drive Bioprocess Development for the Production of Value-added Chemicals

  • Mahadevan, Radhakrishnan;Burgard, Anthony P.;Famili, Iman;Dien, Steve Van;Schilling, Christophe H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.408-417
    • /
    • 2005
  • Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput 'omics' data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.

Genetic Risk Prediction for Normal-Karyotype Acute Myeloid Leukemia Using Whole-Exome Sequencing

  • Heo, Seong Gu;Hong, Eun Pyo;Park, Ji Wan
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • Normal-karyotype acute myeloid leukemia (NK-AML) is a highly malignant and cytogenetically heterogeneous hematologic cancer. We searched for somatic mutations from 10 pairs of tumor and normal cells by using a highly efficient and reliable analysis workflow for whole-exome sequencing data and performed association tests between the NK-AML and somatic mutations. We identified 21 nonsynonymous single nucleotide variants (SNVs) located in a coding region of 18 genes. Among them, the SNVs of three leukemia-related genes (MUC4, CNTNAP2, and GNAS) reported in previous studies were replicated in this study. We conducted stepwise genetic risk score (GRS) models composed of the NK-AML susceptible variants and evaluated the prediction accuracy of each GRS model by computing the area under the receiver operating characteristic curve (AUC). The GRS model that was composed of five SNVs (rs75156964, rs56213454, rs6604516, rs10888338, and rs2443878) showed 100% prediction accuracy, and the combined effect of the three reported genes was validated in the current study (AUC, 0.98; 95% confidence interval, 0.92 to 1.00). Further study with large sample sizes is warranted to validate the combined effect of these somatic point mutations, and the discovery of novel markers may provide an opportunity to develop novel diagnostic and therapeutic targets for NK-AML.

Constructions and Applications of Digital Virtual Factory for Section-steel Shop in Shipbuilding Company (조선 형강 디지털 가상공장 구축 및 활용)

  • Han, Sang-Dong;Shin, Jong-Gye;Kim, Yu-Suk;Yoon, Tae-Hyuk;Kim, Gun-Yeon;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology facilitating effective product developments and agile productions via digital models representing the physical and logical schema and the behavior of real manufacturing systems. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we construct a sophisticated digital virtual factory for the section steel shop in a Korean shipbuilding company by 3-D CAD and virtual manufacturing simulation. The NIST-AMRF CIM hierarchical model and workflow analysis using IDEF methodology are also applied. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory, and improvements in quality of engineering and savings in time from design to production in shipbuilding are possible.

Study on Proactive Data Process Orchestration in Distributed Cloud

  • Jong-Sub Lee;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.135-142
    • /
    • 2024
  • Recently, along with digital transformation, technologies such as cloud computing, big data, and artificial intelligence have been actively introduced. In a situation where these technological changes are progressing rapidly, it is often difficult to manage processes efficiently using existing simple workflow management methods. Companies providing current cloud services are adopting virtualization technologies, including virtual machines (VMs) and containers, in their distributed system infrastructure for automated application deployment. Accordingly, this paper proposes a process-based orchestration system for integrated execution of corporate process-oriented workloads by integrating the potential of big data and machine learning technologies. This system consists of four layers as components for performing workload processes. Additionally, a common information model is applied to the data to efficiently integrate and manage the various formats and uses of data generated during the process creation stage. Moreover, a standard metadata protocol is introduced to ensure smooth exchange between data. This proposed system utilizes various types of data storage to store process data, metadata, and analysis models. This enables flexible management and efficient processing of data.

A Framework for Preliminary Ship Design Process Management System (선박 초기 설계 프로세스 관리 시스템을 위한 프레임워크 제안)

  • Jang, Beom-Seon;Yang, Young-Soon;Lee, Chang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.535-541
    • /
    • 2008
  • As the concurrent engineering concept has emerged along with the support of optimization techniques, lots of endeavors have been made to apply optimization techniques to actual design problems for a holistic decision. Even if the range of design problems which the optimization is applicable to has been extended, most of ship designs still remain in an iterative approach due to the difficulties of seamless integration of all related design activities. In this approach, an entire design problem is divided into many sub-problems and carried out by many different disciplines through complicated internal interactions. This paper focuses on preliminary ship design process. This paper proposes a process centric integrated framework as the first step to establish a workflow based design process management system. The framework consists of two parts; a schedule management part to support a manager to monitor current progress status and adjust current schedule, and a process management part to assist a design to effectively perform a series of design activities by following a predefined procedure. Overall system are decomposed into modules according to the target to be managed in each module. Appropriate interactions between the decomposed modules are designed to achieve a consistency of the entire system. Design process model is also designed on a thorough analysis of actual ship design practice. The proposed framework will be embodied using a commercial workflow package.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

FinBERT Fine-Tuning for Sentiment Analysis: Exploring the Effectiveness of Datasets and Hyperparameters (감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구)

  • Jae Heon Kim;Hui Do Jung;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • This research paper explores the application of FinBERT, a variational BERT-based model pre-trained on financial domain, for sentiment analysis in the financial domain while focusing on the process of identifying suitable training data and hyperparameters. Our goal is to offer a comprehensive guide on effectively utilizing the FinBERT model for accurate sentiment analysis by employing various datasets and fine-tuning hyperparameters. We outline the architecture and workflow of the proposed approach for fine-tuning the FinBERT model in this study, emphasizing the performance of various datasets and hyperparameters for sentiment analysis tasks. Additionally, we verify the reliability of GPT-3 as a suitable annotator by using it for sentiment labeling tasks. Our results show that the fine-tuned FinBERT model excels across a range of datasets and that the optimal combination is a learning rate of 5e-5 and a batch size of 64, which perform consistently well across all datasets. Furthermore, based on the significant performance improvement of the FinBERT model with our Twitter data in general domain compared to our news data in general domain, we also express uncertainty about the model being further pre-trained only on financial news data. We simplify the complex process of determining the optimal approach to the FinBERT model and provide guidelines for selecting additional training datasets and hyperparameters within the fine-tuning process of financial sentiment analysis models.

A Business Service Identification Techniques Based on XL-BPMN Model (XL-BPMN 모델 기반 비즈니스 서비스 식별 기법)

  • Song, Chee-Yang;Cho, Eun-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.125-138
    • /
    • 2016
  • The service identification in service-oriented developments has been conducted by based on workflow, goals, scenarios, usecases, components, features, and patterns. However, the identification of service by semantic approach at the business value view was not detailed yet. In order to enhance accuracy of identifying business service, this paper proposes a method for identifying business service by analyzing syntax and semantics in XL-BPMN model. The business processes based on business scenario are identified, and they are designed in a XL-BPMN business process model. In this business process model, an unit business service is identified through binding closely related activities by the integrated analysis result of syntax patterns and properties-based semantic similarities between activities. The method through XL-BPMN model at upper business levels can identify the reusable unit business service with high accuracy and modularity. It also can accelerate more service-oriented developments by reusing identified services.