• Title/Summary/Keyword: Worker dose assessment

Search Result 46, Processing Time 0.023 seconds

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.

Radiological safety assessment of lead shielded spent resin treatment facility with the treatment capacity of 1 ton/day

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.273-281
    • /
    • 2021
  • The radiological safety of the spent resin treatment facility with a14C treatment capacity of 1 ton/day was evaluated in terms of the external and internal exposure of worker according to operation scenario. In terms of external dose, the annual dose for close work for 1 h/day at a distance of more than 1 m (19.8 mSv) satisfied the annual dose limit. For 8 h of close work per day, the annual dose exceeded the dose limit. For remote work of 2000 h/year, the annual dose was 14.4 mSv. Lead shielding was considered to reduce exposure dose, and the highest annual dose during close work for 1 h/day corresponded to 6.75 mSv. For close work of 2000 h/year and lead thickness exceeding 1.5 cm, the highest value of annual dose was derived as 13.2 mSv. In terms of internal exposure, the initial year dose was estimated to be 1.14E+03 mSv when conservatively 100% of the nuclides were assumed to leak. The allowable outflow rate was derived as 7.77E-02% and 2.00E-01% for the average limit of 20 mSv and the maximum limit of 50 mSv, respectively, where the annual replacement of the worker was required for 50 mSv.

Development of a Methodology for Evaluating Radiation Dose to Workers in Auxiliary Building under Severe Accidents (중대사고 시 보조건물 내 작업자 피폭선량 평가 방법론 개발)

  • Jun Hyeok Kim;Byung Jo Kim;Jin Hyoung Bai
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.217-221
    • /
    • 2024
  • This study aims to evaluate the radiation dose received by workers within the auxiliary building of the Saeul Units 1 and 2 during a severe accident. To achieve this, representative accident scenarios were selected, and operator actions required by the severe accident management guidelines were derived to present a methodology for dose assessment. The study utilized MAAP5.06 to analyze severe accidents and employed MAAP DOSE to evaluate worker radiation exposure. Among the three operator actions considered, the direct spray action on the reactor building outer wall-side penetration resulted in the highest estimated radiation dose. This is likely because the workers are deployed near the reactor building penetration, exposing them to higher radiation levels. Future plans include the optimization of dose performance by comparing these findings with evaluations conducted using MCNP, and the development of a data-driven ALARA decision support system for predicting and diagnosing radiation exposure on nuclear sites to ensure worker safety during severe accidents.

Evaluation of the Application of worker-DNELs under REACH Guidance as Provisional Occupational Exposure Limits in the Workplace (작업자 무영향도출수준(worker-DNEL)의 사업장 적용을 위한 평가 연구)

  • Yoon, Young Hee;Lee, Seok Won;Jung, Hyun Hee;Kim, Kwan Sick
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Objectives: The purpose of this study is to calculate the worker-DNEL (Derived No Effect Level) values using the REACH guidance and compare the calculated DNELs with existing Korea occupational exposure limits (KOELs) for evaluation of the applicability of the worker-DNELs as provisional occupational exposure limits for chemicals that are not established KOELs in the workplace. Methods: The worker-DNELs for 46 chemicals among 113 hazardous substance requiring management were calculated using the REACH guidance, and a paired t-test was performed to see if there is any statistical difference between two lists (worker-DNELs vs KOELs). The ratios of KOELs over worker-DNELs were also calculated to compare the overall levels of two lists using the geometric means method. Results: The calculated worker-DNELs for 46 chemicals ranged from 0.001 to $329mg/m^3$ (GM= 6.9, GSD = 10.8), and appeared to be a significant difference between the worker-DNELs and the KOELs (p < 0.01). In addition, the ratios of KOELs over worker-DNELs ranged from 0.3 to 394 times (GM = 10.2, GSD = 3.9), indicating that the worker-DNELs were, on average, 27 times lower than the KOELs. Conclusions: Therefore, the study results show that the calculated worker-DNELs can be applied and used as provisional occupational exposure limits in the workplace in order to reduce worker exposures to chemicals and health risks, and manage potential worker exposures based on the precautionary principle through comprehensive chemical risk assessment.

An External Dose Assessment of Worker during RadWaste Treatment Facility Decommissioning

  • Chae, San;Park, Seungkook;Park, Jinho;Min, Sujung;Kim, Jongjin;Lee, Jinwoo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Background: Kori unit #1 is permanently shut down after a 40-year lifetime. The Nuclear Safety and Security Commission recommends establishing initial decommissioning plans for all nuclear and radwaste treatment facilities. Therefore, the Korea Atomic Energy Research Institute (KAERI) must establish an initial and final decommissioning plan for radwaste-treatment facilities. Radiation safety assessment, which constitutes one chapter of the decommissioning plan, is important for establishing a decommissioning schedule, a strategy, and cost. It is also a critical issue for the government and public to understand. Materials and Methods: This study provides a method for assessing external radiation dose to workers during decommissioning. An external dose is calculated following each exposure scenario, decommissioning strategy, and working schedule. In this study, exposure dose is evaluated using the deterministic method. Physical characterization of the facility is obtained by both direct measurement and analysis of the drawings, and radiological characterization is analyzed using the annual report of KAERI, which measures the ambient dose every month. Results and Discussion: External doses are calculated at each stage of a decommissioning strategy and found to increase with each successive stage. The maximum external dose was evaluated to be 397.06 man-mSv when working in liquid-waste storage. To satisfy the regulations, working period and manpower must be managed. In this study, average and cumulative exposure doses were calculated for three cases, and the average exposure dose was found to be about 17 mSv/yr in all the cases. Conclusion: For the three cases presented, the average exposure dose is well below the annual maximum effective dose restriction imposed by the international and domestic regulations. Working period and manpower greatly affect the cost and entire decommissioning plan; hence, the chosen option must take account of these factors with due consideration of worker safety.

Working Environment and Risk Assessment of Gasoline in Workplace (Gasoline 취급 사업장의 작업환경 측정 및 위해성 평가)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • To protect the workers' health, we evaluated the hazards of gasoline which the large amounts of use and lack of information, and perform the risk assessment through the measurement of working environment. It is estimated the reproductive toxicity, and has germ cell mutagenicity class 1B, also IARC 2B, ACGIH A3 with carcinogenicity. With working environment, it is measured as below the TLV-TWA $900mg/m^3$. It is also calculated $0.3mg/m^3$ as carcinogenicity RfC (worker), $2.7mg/m^3$ as chronic inhalation toxicity RfC (worker), $2.7mg/m^3$ as developmental toxicity RfC (worker). From all of these results, it is calculated that the risks are 459, 51 and 51 as carcinogenicity, chronic inhalation toxicity and developmental toxicity, respectively. It is concluded that the risk of gasoline is evaluated over 1.

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

Dose assessment applied with the specific data of Young-gwang area for clearance by landfill (영광지역 특성자료를 적용한 매립 자체처분 피폭선량 평가)

  • 임용규;이지훈;양호연;신상운
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.497-502
    • /
    • 2003
  • Landfill is an widely applied alternative for clearance of non-contaminated waste or slightly contaminated waste generated from nuclear facilities. In this study, exposure dose is estimated for a worker and a resident at the landfill area in Young-gwang nuclear power plant. Based on evaluated dose, clearance concentrations of each radionuclide are determinated for dose criteria of 10 $\muSv/y$. The results of age-dependent dose are 1.02 $\muSv$ per year for resident and 0.471 $\muSv$ per year for worker. Clearance concentrations for each radionuclide are evaluated from $1.33{\times}10_{-1}$ Bq per gram to $2.85{\times}10^2$ Bq per gram.

  • PDF

Recommendation of an Occupational Exposure Limit and Legal Control Following an Acute Hepatotoxicity Incident from HCFC-123 (HCFC-123의 급성 독성간질환 발생 사례에 따른 노출기준 및 법 관리 필요성 권고)

  • Lee, Kwon Seob;Jo, Ji hoon;Choi, Bo Kyung;Lee, Hye Lim;Byeon, Sang Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.80-90
    • /
    • 2018
  • Objectives: This study was performed to propose a domestic occupational exposure limit(OEL) following a health hazard assessment, calculation of a non-carcinogenicity reference concentration worker($RfC_{worker}$) value, and examination of international agencies' exposure limits. It also recommends legal management within the Occupational Safety and Health Act for HCFC-123, which caused an acute hepatotoxicity incident. Methods: An acute hepatotoxicity incident due to the fire extinguishing agent HCFC-123 was investigated. Toxicological hazard and health hazard classifications were examined and a non-carcinogenicity $RfC_{worker}$ value was calculated for HCFC-123. An OEL and the necessity of legal management were recommended as well. Results and Conclusions: An OEL for HCFC-123 of 10 ppm($62.5mg/m^3$), which considered the $RfC_{worker}$ value, 5.56 ppm, produced in dose-response assessment and the exposure level of 19.1-20.9 ppm measured as an eight-hour TWA(time-weighted average) in the incident place, is recommended. HCFC-123 is urged to be included as a chemical requiring legal management in the Occupational Safety and Health Regulations. In addition, it is recommended that a peak exposure of ACGIH be adopted in the Notice of the Ministry of Employment and Labor.

An Effects of Radiation Dose Assessment for Radiation Workers and the Member of Public from Main Radionuclides at Nuclear Power Plants (원전에서 발생하는 주요 방사성핵종들이 방사선작업종사자와 원전 주변주민의 피폭방사선량 평가에 미치는 영향)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In a primary system at nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water conditions. Particularly, $^3H,\;^{14}C,\;^{58}Co,\;^{60}Co,\;^{137}Cs,\;and^{131}I$ are important radionuclides in respect of dose assessment for radiation workers and management of radioactive effluents. In this paper, the dominant contributors of radiation exposure for radiation workers and the member of public adjacent to NPPs were reviewed and the process of dose assessment attributable to those contributors were introduced. Furthermore, the analysis for some examples of radiation exposure to radiation workers and the public during the NPP operation was carried out. This analysis included the notable precedents of internal radiation exposure and contamination of demineralized water occurred in Korean NPPs. Particularly, the potential issue about the dose assessment of tritium and carbon-14 was also reviewed in this paper.