• Title/Summary/Keyword: Work simulation

Search Result 3,266, Processing Time 0.031 seconds

A Fundamental Study for Creating 3D CG Animation of an Assembly Work

  • Yamanaka, Hiroki;Matsumoto, Toshiyuki;Shinoda, Shinji;Niwa, Akira
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.188-195
    • /
    • 2012
  • This paper presents a new mode of expressing a 3D assembly work for creating a 3D CG animation without judgment by human from minimal required information. In the field of manufacturing, there are favorable movements in the utilization of 3D CAD for 3D simulation to shorten lead time for product development and pre-production. But simulating an assembly work has troubles to need huge quantity of manually input data. This paper discusses what minimal necessary information for creating 3D CG animations of assembly works is, focusing on the features of assembly works. Furthermore, a new mode of expressing a 3D assembly work is proposed as "state/change transition diagrams" (SCTD), which express arbitrary scenes in an assembly work as "state" and describe a sequential assembly work with "state" and "change", and the outline of its stepwise generation algorithm is also described. SCTD can be converted to a 3D CG animation of an assembly work without judgment by human. This paper focuses on the creating 3D CG animation of assembly works which workers use only their both hands.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

A Case Study on Manufacturing Processes for Virtual Garment Sample

  • Choi, Young Lim
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Advances in 3D garment simulation technology contribute greatly to consumers becoming more immersed in movies and games by realistically expressing the garments the characters in the movie or game are wearing. The fashion industry has reached a point where it needs to maximize efficiency in production and distribution to go beyond time and space in order to compete on the global market. The processes of design and product development in the fashion industry require countless hours of work and consume vast resources in terms of materials and energy to repeat sample production and assessment. Therefore, the design and product development tools and techniques must aim to reduce the sample making process. Therefore, this study aims to study a case for comparing the real garment sample making process to the virtual garment sample making process. In this study, we have analysed the differences between the real and virtual garment making processes by choosing designated patterns. As we can see from the study results, the real and virtual garments generally are made through similar processes in manufacturing, while the time consumed for each shows great variation. In real garment making, scissoring and sewing require the greatest number of work hours, whereas in virtual garment making, most of the time was spent in the simulation process.

A Method for Schedule Simulation Considering Rework and Uncertainty (재작업과 불확실성을 고려한 일정 시뮬레이션 방법론)

  • Kim, Chan-Mook;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • The majority of development projects fail to meet their target schedule and cost, with the overrun typically between 40 and 200 percent. These overruns happen because the planners underestimate the work or do not consider the need to rework at project planning. Representative schedule planning/management techniques such as Gantt Chart, PERT/CPM etc. that are used in domestic project planning are unable to reflect rework. This paper proposes a method to consider rework to provide more realistic estimates at schedule planning. Additionally, to prevent the underestimation of the work this paper proposes a simulation method that calculates a probabilistic estimated schedule and the associated variance based on the random variable modeling of individual task completion dates.

SITAT: Simulation-based Interface Testing Automation Tool for Robot Software Component (로봇 소프트웨어 컴포넌트를 위한 시뮬레이션 기반 인터페이스 테스팅 자동화 도구)

  • Kang, Jeong-Seok;Choi, Hyeong-Seob;Maeng, Sang-Woo;Kim, Si-Wan;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.608-616
    • /
    • 2010
  • Robot software components can be categorized into two types; the pure S/W component and the H/W-related one. Since interface testing of the robot software component is the labour-intensive and complicated work, an effective automated testing tool is necessary. Especially it is difficult to test all types of H/W-related components because it is hard work to prepare all H/W modules related to them. This paper proposes a new simulation-based interface testing automation tool(SITAT) which generates automatically test cases for interface testing of the robot software component and executes the interface test with the generated test cases where the simulator is used for simulation of the activity of a H/W module instead of the real H/W module. This paper verifies the effectiveness of the suggested SITAT with testing of the real H/W-related robot software component.

Development of a Virtual Simulation on Window 98/NT Environment (Window98 환경 내에서 가상 시뮬레이션 개발)

  • 김석하;김영호;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.373-376
    • /
    • 2001
  • In this paper to cope with the reduction of products life-cycle as the variety of products along with the various demands of consumers, a virtual simulator is developed to make the changeover of manufacturing line efficient to embody a virtual simulation similar to a real manufacturing line. The developed virtual simulator can design a layout of a factory and make the time scheduling. Every factory has one simulator so that one product can be manufactured in the factories to use them as virtual factories. We suggest a scheme that heightens the ability to the diversity of manufacturing models by making the information of manufacturing lines and products models to be shared. The developed system embodies a virtual manufacturing line on the simulation using various manipulators and work cells as manufacturing components. we develop a virtual simulator system on Window 98/NT environment of Microsoft, operating system using of the greater part of PC user. Window program have a merit making GUI environment that programmer can use without the expert knowledge about hardware. A suer with the simulator can utilize an interface that makes one to manage the separate task process for each manufacturing module, change operator components and work cells, and easily teach tasks of each task module.

  • PDF

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

Simulation of Surface Coverage Made by Impeller Type Shot-peening Machines (임펠러식 쇼트피닝 머신에 의한 표면 커버리지 시뮬레이션)

  • Shin, Ki-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • Shot-peening is frequently used on various mechanical parts because it can improve the fatigue life of components by generating compressive residual stresses on the surface. This can be done by repeatedly hitting the work-piece surface with small balls and making indentations on it. In fact, finding optimal peening time among various peening parameters is the most important. Under-peening can not improve the fatigue life sufficiently while over-peening causes cracks and reduces fatigue life in contrast. In general, optimal peening time is experimentally determined by measuring arc-height using Almen-strip in accordance with SAE J442 standard. To save the time and efforts spent in carrying out experiments to find optimal peening time, this paper presents a computer simulation algorithm for the estimation of surface coverage made by impeller type shot-peening machines (PMI-0608). Surface coverage is defined as the proportion of the work-piece surface that has been indented in a given time of shot-peening. An example (standard tensile test specimen) is presented to validate the proposed method.