• Title/Summary/Keyword: Work pressure

Search Result 2,342, Processing Time 0.025 seconds

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • Microstructure and hardness of metallic powder of Cu was studied after high pressure torsion (HPT) with 10 torsions and high pressure of 6 GPa. The size Cu grain decreases drastically after HPT and reaches the nano size range. During HPT, Cu powder increases hardness and Hall-Petch hardening, due to the decreasing grain size. In this study, effect of HPT on the hardness of Cu powders and consolidation with Nanocrystalline of the work reported here. The results indicated that Cu powder has a beneficial effect on homogeneous deformation, reducing grain size.

  • PDF

Flow-Dependent Friction Loss in an Implantable Artificial Lung

  • Lee, Sam-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1470-1476
    • /
    • 2002
  • The goal of this work is to design and build an implantable artificial lung that can be inserted as a whole into a large vein in the body with the least effect on cardiovascular hemodynamics. The experimental results demonstrate that the pressure drop is not entirely related to viscosity effects. The friction factor decreases with an increase in the number of tied-hollow fibers at a constant Reynolds number A uniform flow pattern without stagnation is observed at all numbers of tied hollow fibers tested. The tied hollow fiber module, built in this study with 3 cm of outer diameter of module. 380 m of outer diameter of tied hollow fiber, and 700 number of tied hollow fiber with length of 60 cm, which shows a pressure drop of 13-16 mmHg, satisfies the required pressure drop qualifying 15 mmHg as an intravascular artificial lung.

UV emission characterization of ZnO thin films depending on the variation of oxygen pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1523-1525
    • /
    • 1999
  • ZnO is a wide-bandgap II-VI semiconductor and has a variety of potential application. ZnO exhibits good piezoelectric, photoelectric and optic properties, and is good for a electroluminescence device. ZnO films have been deposited at (0001) shappire by PLD technique. Chamber was evacuated by turbomolecular pump to a base pressure of $1{\times}10^{-6}$ Torr Nd:YAG pulsed laser was operated at ${\lambda}=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C$ to $700^{\circ}C$. At aleady works, UV emission and green-yellow PL was observed. In this work, ZnO films showed UV, violet, green and yellow emissions. UV emission was enhanced by increasing partial oxygen pressure. We investigated relationship between partial oxygen pressure and UV emission.

  • PDF

A Study on Heat Transfer and Pressure drop Characteristics in Plate Heat Exchange (판형 열교환기의 열전달 및 압력강하 특성에 관한 연구)

  • 서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.581-587
    • /
    • 2001
  • Plate heat exchange(PHE) will be applied to the refrigeration and air conditioning systems as evaporators or condensers for their high efficiency and compactness. The purpose of this study is the analyze the characteristics of heat transfer and pressure drop of plate heat exchanger. Numerical work was conducted using the FLUENT code k-$\varepsilon$model. Also the dependence of heat transfer coefficient and friction factor on Reynolds number was investigated. As the Reynolds number increases, it is found that heat transfer coefficient also increases, but friction factor decreases. The study examines the internal flow, thermal distribution and the pressure distribution in the channel of plate heat exchanger. The results of CFD analysis compared with experimental data, and the difference of friction factor and Nusselt number in plate heat exchanger are 10% and 20%, respectively, Therefore the CFD analysis model is effective for the performance prediction of plate heat exchanger.

  • PDF

Effect of strain rate on the mechanical behavior of carbon/epoxy composites subjected to high pressure (정수압을 받는 carbon/epoxy 복합재의 변형률 속도 효과)

  • 이지훈;김만태;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.191-191
    • /
    • 2003
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by strain rate. In this work, we investigated the effect of strain rate on the compressional elastic modulus and fracture stress of fiber-reinforced composites under hydrostatic pressure environment. The material used in the compressional test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 250 MPa. Compressional tests were performed applying various strain rates of 0.05 %/sec, 0.25 %/sec, 0.45 %/sec, and 0.75 %/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate.

  • PDF

A development of linear compressor for a cryogenic stirling cooler (극저온 스터링 냉동기용 선형 압축기 개발)

  • 지상우;임경화;강희석;강경태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.731-734
    • /
    • 2001
  • A cryogenic stirling cooler is currently under development at Korea Institute of Industrial Technology(KITECH). Cryocooler has many kinds of types. The stirling cooler is the most appropriate one for under 80K with the trait of long life cycle and small size. The stirling cooler uses helium as a working fluid. Helium is pressurized by the linear compressor which is driver by linear motor. In this paper, the change of pressure and volume is studied by the isothermal analysis method. It is necessary to investigate the optimized pressure to meets the highest COP. The compressor's piston and expender's displacer interact according to the working fluid's pressure level and the phase difference. This paper presents the relation between the initial pressure and the work of cryocooler. By that results, we can predict the performance of linear compressor.

  • PDF

High Pressure Effects on 1,3-Dipolar Cycloaddition of Azides with Alkynes (아자이드와 알킨의 1,3-쌍극자 고리첨가반응에서 고압이 반응속도에 미치는 영향에 대한 연구)

  • Kwon, Jinju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.736-742
    • /
    • 2015
  • The effect of pressure on 1,3-dipolar cycloaddtion has been studied by means of FT-IR and NMR spectroscopy. Pressure accelerates 1,3-dipolar cycloaddition without solvent or catalyst. This simple and inexpensive method eliminates the need for work-up or purification. The method is expected to be applied to the synthesis of binders for solid rocket propellants.

Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray (증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

A Study on the Capacity Design of Accumulator in Hydraulic Regenerative Brake System (유압 재생 브레이크 시스템의 축압기 용량설계에 관한 연구)

  • 이재구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.348-354
    • /
    • 2000
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls a hasty surge pressure. This study suggests a method ot determine the capacity of the accumulator to control surge pressure to a desired degree. A mathematical dynamic model of the system was derived and the parameters in the model were identified from experimental data. A series of computer simulation were done for the brake action. The results of the simulation work were compared with those of experiments. These results of the computer simulation and experiments shows that the proposed design method of the accumulator was verified in controlling surge pressure of the system.

  • PDF

Examination of Dust Trapping Mechanism in a Metal Fiber Filter-bed (금속 섬유 필터층을 이용한 미세 분진 집진 성능 관찰)

  • 이경미;조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2004
  • A metal fiber bed has seldom been applied to the practical filtration process despite its excellent mechanical and chemical stability. The filter-bed used in this work was highly porous with open structure, of which apparent porosity was 80 ∼ 90%. Although pressure loss across the filter-bed was very low, separation efficiency was found to be quite high. This paper focuses on the basic filtration mechanisms of a metal filter-bed and a thin ceramic filter from fly ash for reference. The experimental parameters were face velocity, dust loading and porosity of filter-bed. Pressure drop increased with increasing face velocity and dust feeding load for both filters. It also showed that dust particles deposited in the deep flow path, finally resulting in clogging the pore channels. It thereby indicates that the dominating mechanism of the metal filter-bed would be depth filtration. Meanwhile, the thin fly ash composite filters trapped the aerated dust mainly on the surface of the filter medium, so that the instantaneously formed dust layer might cause a steep increase of pressure drop across the filtration system.