• Title/Summary/Keyword: Work pressure

Search Result 2,346, Processing Time 0.034 seconds

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

A Basic Study on the Application of a Variable Preload Device using Rubber Pressure for High Speed Spindle Systems (고속스핀들의 고무압을 이용한 가변예압장치 실용화를 위한 기초연구)

  • Choi, Chi Hyuk;Sim, Min Seop;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.677-682
    • /
    • 2014
  • One of the most important element technologies for achieving high-precision in machine tool spindle systems is preload technology for the bearing of spindle systems. Fixed position preload, constant pressure preload, conversion preload and variable preload methods have been applied for the spindle systems. In this study, a new variable preload method using centrifugal force and rubber pressure is used for reducing installation costs through simplifying its structure. The main objective of the work is the verification of the operability in a preload device using the rubber pressure by the finite element analysis. It is shown that the variable preload device proposed in this study is applicable to high speed machine tool spindles.

The Effect of Molding Conditions on the Surface Gloss of HIPS Molding (HIPS 성형품에서 성형조건이 표면 광택에 미치는 영향)

  • Jeong, Y.D.;Lee, M.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.81-85
    • /
    • 2000
  • The surface gloss of the injection molded part is one of the most significant point for evaluation the quality of products appearance. The effects of molding condition on the gloss of HIPS(High Impact Poly Styrene) molded part were investigated in this work. The measurements of gloss on the surface of molded part were carried out with different melt temperature, mold temperature, injection pressure and holding pressure. We observed the result of HIPS gloss compared with our's previous ABS study. The more melt and mold temperature increased, the brighter the gloss increase. Holding and injection pressure had little effect on the gloss. The gloss was effected in order of melt temperature, mold temperature, injection pressure, holding pressure.

  • PDF

Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect (고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향)

  • 이지훈;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Pressure and velocity fluctuations in the atmospheric boundary layer

  • Sterling, M.;Baker, C.J.;Quinn, A.D.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.13-34
    • /
    • 2005
  • This paper presents an analysis of wind velocity and pressure data obtained in a rural environment with a view to identifying the vortex structures present within the flow and examining the relationship between pressure and dynamic pressure. The data is analysed using both conventional analysis and conditional sampling. A method examining the eigenvalues of a matrix formed by the addition of the square of the strain tensor and the square of the vorticity tensor is also investigated. This method illustrates that there are a number of vortex structures present in the flow. The work presented in this paper suggests that the extreme events occur as a result of the superposition of two independent mechanisms.

Pressure Characteristics According to the Duct Shapes of Turbo Blowers Connected in Serial (다단 블로어 덕트형상에 따른 압력특성 연구)

  • Park, Young-Bin;Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2010
  • Pressure characteristics according to the duct shapes of turbo blowers connected in serial have been performed to reduce pressure loss in the piping system. To analyze three-dimensional flow field in the turbo blower system, general analysis code, CFX, is introduced in the present work. SST turbulence model is applied to estimate the eddy viscosity. Throughout the numerical simulation for the turbo blower system having a various shape of a inlet guide, optimal inlet guide can be selected. It is found that the pressure loss in the piping system having the optimal inlet guide can be reduced by minimizing the inflow distortion at the upstream of the impeller. Detailed flow analysis of the blower system serially connected is also performed and analyzed.

Numerical Study on The Pressure Drop of Immiscible Two-Phase Flow in The Pressure Driven Micro Channel Using Lattice Boltzmann Method (Lattice Boltzmann 방법을 이용한 압력구동 미세채널 내 비혼합 2상 유체 흐름의 압력강하에 대한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Beom-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.436-439
    • /
    • 2008
  • Computer simulation of multiphase flows has grown dramatically in the last two decades. In this work, we have studied the flow characteristics of immiscible two fluids in a 2-D micro channel driven by pressure gradient using multi-phase lattice Boltzmann method suggested by Shan and Chen(1993) considering the fluid-surface interaction. we tried to examine the effects of parameters related to the two phase flow characteristics and pressure drop in the micro channel like contact angle and channel configuration by changing their value. The results of current study could show the lattice Boltzmann method can simulate the behaviors of two phase flow in the region of micro fluidics well.

  • PDF

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

A Control of Two-Dimensional Subsonic Diffuser Flow Using the Turbulent Wake Caused by a Cylinder (실린더 후류를 이용한 2 차원 아음속 디퓨저 유동의 제어에 관한 연구)

  • Kim, Tae-Ho;Lee, Sang-Chan;Yoon, Bok-Hyun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.980-985
    • /
    • 2003
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the inlet of a 2-dimensional diffuser. Computation are applied to three-dimensional steady Navier-Stokes equations. The fully implicit finite volume scheme is used to discretize the governing equations. The computational results are qualitatively well compared to the experimental results. The results show that the pressure recovery of the subsonic diffuser is dependent on the diameter and location of cylinder. It is found that a certain diameter and location of the cylinder to generate the turbulent wake give a better pressure recovery, compared with no cylinder flow.

  • PDF

Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater (ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향)

  • Han, Min-Su;Im, Myeong-Hwan;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.