• Title/Summary/Keyword: Work motions

Search Result 240, Processing Time 0.027 seconds

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

The Evaluation of the Work Motion Suitability of Men's Coverall Type Painting Work Clothes Using 3D Virtual Clothing Simulation (3차원 가상착의 시스템을 활용한 남성용 커버롤 도장 작업복의 작업동작 적합성 평가)

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.24 no.4
    • /
    • pp.63-84
    • /
    • 2020
  • It is essential to consider the heavy industrial working environment factors which are regarded as harmful to workers' health and safety and suitable work motion factors for the workers' motion while developing the work clothes for painting workers in the machinery and shipbuilding industries. This study suggests the use of 3D virtual clothing simulations as a solution to protect the human body from hazardous working conditions accompanying the development of painting work clothes and assessing the work motion performance associated with the comfort while workers wear them during the work clothes. The initial aim of the study is to examine a male avatar to run work motions simultaneously within a 3D virtual clothing simulator, secondly, to present the simulation images of coverall type men's painting work clothes with the application of two experimental painting work motions and one control motion to the avatar, and finally, to present the distance analysis images of the painting work clothes and the avatar body and air gap rates through the analysis of cross-sections of the avatar body while wearing the coverall work clothes according to the work motions. The results showed that the distance degree of painting work clothes to the avatar body for each part of the human body when performing painting work motions. Moreover, 3D virtual clothing simulations enabled the creation of a male model avatar to run painting work motions together and the painting work clothes developed were found to be suitable for the painting work motions.

Development of robot work measurement by the unit motion model (단위 동작 모형에 따른 로봇 작업시간 측정법의 개발)

  • 권규식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.367-370
    • /
    • 1996
  • This study deals with the motion modeling by the unit motion of robots and the work measurement through classification of robot motions and standardization. The proposed approach is to scrutinize the Predetermined Time Standards(PTS) methods for measurement of manual tasks performed by people and the basic motions for accomplishing that tasks. And then, it constructs the unit motion models as subsets composed with the basic motions. It apply together with movements distance as a time variable, too. These results are used for the work measurements of robots by the unit motion models.

  • PDF

Analysis of Maximum Acceptable Frequencies for Upper Extremity Motions with Forces in a Seated Position (앉은 자세에서 힘 수준에 따른 상지관절 동작별 최대 수용 반복 빈도수 분석)

  • Kwon, O-Chae;You, Hee-Cheon;Jung, Ki-Hyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2005
  • Evaluation of repetitiveness for upper extremity intensive tasks is essential to determine the level of risk for upper extremity musculoskeletal disorders at the workplace. However, experimental data available to establish the acceptable levels of repetitiveness for various postures and forces is lacking. The present study examined the maximum acceptable frequencies(MAFs; motions/min.) of shoulder, elbow, wrist, and index finger motions at different forces(1kgf and 4kgf for shoulder, elbow, and wrist; 0.25kgf and 1 kgf for index finger) in sitting. Seventeen right-handed males in 20s without having any history musculoskeletal disorders participated in the MAF experiment. The participants determined their MAFs for the upper extremity motions by using the self-adjustment method and their work pulse(increase in heart rate; beats/min.) and rating of perceived exertion(RPE) were measured when working at MAF. The MAFs of elbow, wrist, and index finger motions for each force level were about 2, 3, and 6 times the corresponding MAF(9 at the high force and 24 at the low force) of shoulder motion and the MAFs at the low force increased about 2 times those at the high force. The work pulses of elbow, wrist, and index finger motions for each force level were 70%, 50%, and 30% of the corresponding work pulse(17 at the high force and 12 at the low force) of shoulder motion and the work pulses at the low force were about 70 % of those at the high force. Lastly, the RPEs of the upper extremity regions were about level 3(moderate) or below.

Evolutionary Generation of the Motions for Cooperative Work between Humanoid and Mobile Robot (휴머노이드와 모바일 로봇의 협조작업을 위한 진화적 동작 생성)

  • Jang, Jae-Young;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, a prototype of cooperative work model for multi-robots system is introduced and the evolutionary approach is applied to generate the motions for the cooperative works of multi-robots system using genetic algorithm. The cooperative tasks can be performed by a humanoid robot and a mobile robot to deliver objects from shelves. Generation of the humanoid motions such as pick up, rotation, and place operation for the cooperative works are evolved. Modeling and computer simulation for the cooperative robots system are executed in Webots environments. Experimental results show the feasible and reasonable solutions for humanoid cooperative tasks are obtained.

Domain Wall Motions in Ferromagnetic Thin Film Induced by Laser Heating Pulse

  • Park, Hyun Soon
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.128-129
    • /
    • 2018
  • Soft ferromagnetic materials are utilized for various electromagnetic devices such as magnetic recording heads and magnetic shielding. In situ observation of magnetic microstructures and domain wall motions are prerequisite for understanding and improving their magnetic properties. In this work, by the Fresnel (out-of-focus) method of Lorentz microscopy, we observe the domain wall motions of polycrystalline Ni/Ti thin film layers triggered by single-shot laser pulse. Random motions of domain walls were visualized at every single pulse.

A Computer-aided Analysis and Model of Human Motion (인체동작의 컴퓨터 분석모델)

  • Kim Yeong-Gil
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.2
    • /
    • pp.45-55
    • /
    • 1983
  • Film data photographed by Motor Drive Camera were gathered and recorded in the FM Tape Recorder via computer-aided Location Analyzer and Voltage Generator. The recorded analogue data are converted into digital voltage values corresponding to the location of 14 landmarks by Analog-to-Digital Converter attached to digital computer. Using these converted values, the human motions were reproduced by CalComp Plotter and computer screen. This author concludes that any human motions can be analyzed by computer and we can find some methods of improvements of motions in work places, sports science, or operations of military equipments.

  • PDF

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

Devising a Training Method for Assembly Work by Employing Disassembly

  • Ichikizaki, Osamu;Kubota, Ryou;Komori, Toshikazu;Matsumoto, Toshiyuki;Erikawa, Akihiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.368-379
    • /
    • 2013
  • Efficiency in work training is a perennial issue due to high-diversity low-volume production, particularly for manufacturers producing office machines which are manually assembled by workers. To reduce the training cost, parts used in training are usually reused; a trainer disassembles a product assembled by a worker in training. This paper proposes a training method that employs disassembly usually performed by a trainer. This method assigns both assembly and disassembly to a worker in training, in contrast to the conventional method. The effectiveness of the proposed method is experimentally discussed in terms of learning assembly motions and work procedure at each learning stage, namely, "undergoing learning," "immediately after learning," and "seven days after learning." The effectiveness of the training method is confirmed. The method improves the stability of work procedure recollection immediately after training. Furthermore, at seven days after training, it improves retention of the assembly motions and work procedure, and also promotes and maintains memory related to product structure.