• 제목/요약/키워드: Wordvector

검색결과 1건 처리시간 0.014초

딥러닝을 위한 텍스트 전처리에 따른 단어벡터 분석의 차이 연구 (Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning)

  • 고광호
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.489-495
    • /
    • 2022
  • 언어모델(Language Model)을 구축하기 위한 딥러닝 기법인 LSTM의 경우 학습에 사용되는 말뭉치의 전처리 방식에 따라 그 결과가 달라진다. 본 연구에서는 유명한 문학작품(기형도의 시집)을 말뭉치로 사용하여 LSTM 모델을 학습시켰다. 원문을 그대로 사용하는 경우와 조사/어미 등을 삭제한 경우에 따라 상이한 단어벡터 세트를 각각 얻을 수 있다. 이러한 전처리 방식에 따른 유사도/유추 연산 결과, 단어벡터의 평면상의 위치 및 언어모델의 텍스트생성 결과를 비교분석했다. 문학작품을 말뭉치로 사용하는 경우, 전처리 방식에 따라 연산된 단어는 달라지지만, 단어들의 유사도가 높고 유추관계의 상관도가 높다는 것을 알 수 있었다. 평면상의 단어 위치 역시 달라지지만 원래의 맥락과 어긋나지 않았고, 생성된 텍스트는 원래의 분위기와 비슷하면서도 이색적인 작품으로 감상할 수 있었다. 이러한 분석을 통해 문학작품을 객관적이고 다채롭게 향유할 수 있는 수단으로 딥러닝 기법의 언어모델을 활용할 수 있다고 판단된다.