본 논문은 다양한 워드 임베딩 모델(word embedding model)들과 하이퍼 파라미터(hyper parameter)들을 조합하였을 때 특정 영역에 어떠한 성능을 보여주는지에 대한 연구이다. 3 가지의 워드 임베딩 모델인 Word2Vec, FastText, Glove의 차원(dimension)과 윈도우 사이즈(window size), 최소 횟수(min count)를 각기 달리하여 총 36개의 임베딩 벡터(embedding vector)를 만들었다. 각 임베딩 벡터를 Fast and Accurate Dependency Parser 모델에 적용하여 각 모들의 성능을 측정하였다. 모든 모델에서 차원이 높을수록 성능이 개선되었으며, FastText가 대부분의 경우에서 높은 성능을 내는 것을 알 수 있었다.
Big data processing technology and artificial intelligence (AI) are increasingly attracting attention. Natural language processing is an important research area of artificial intelligence. In this paper, we use Korean news articles to extract topic distributions in documents and word distribution vectors in topics through LDA-based Topic Modeling. Then, we use Word2vec to vector words, and generate a weight matrix to derive the relevance SCORE considering the semantic relationship between the words. We propose a way to recommend documents in order of high score.
본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능 평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능 실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.
빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.
본 논문은 화자 독립의 단독이 언직에 관한 연구로 기존의 MSVQ(multisection vector quantization) 일질시스템을 개선한 새로운 MSVQ 시스템을 제안한다. 제안된 내용은 기존의 시스템과는 달리 인식시 시험패턴의 구간 수를 표준패턴의 구간 수보다 한 구간 더 늘리는 것이다. 이 방법에 의한 실험시 인식 대상으로는 146개의 DDD 지역망을 선택했으며, 특징 파라베타로는 12사 LPC 스트럼(cepstrum) 계수를 사용했고 코드북 지정석 중심점 구하는 방법으로 MINSUM과 MINIMAX기법을 사용하였다. 실험 결과에 의하면 DTW(dynamic time warping) 패턴 매칭 방법, VQ(vector quantization)에 의한 방법은 물론 기존의 MSVQ 방법보다 계산량이 감소함과 동시에 더 높은 인식율을 얻을 수 있었다. 수 있었다.
최근 워드 임베딩이 딥러닝 기반 자연어 처리를 다루는 다양한 업무에서 우수한 성능을 나타내면서, 단어, 문장, 그리고 문서 임베딩의 고도화 및 활용에 대한 연구가 활발하게 이루어지고 있다. 예를 들어 교차 언어 전이는 서로 다른 언어 간의 의미적 교환을 가능하게 하는 분야로, 임베딩 모델의 발전과 동시에 성장하고 있다. 또한 핵심 기술인 벡터 정렬(Vector Alignment)은 임베딩 기반 다양한 분석에 적용될 수 있다는 기대에 힘입어 학계의 관심이 더욱 높아지고 있다. 특히 벡터 정렬은 최근 수요가 높아지고 있는 분야간 매핑, 즉 대용량의 범용 문서로 학습된 사전학습 언어모델의 공간에 R&D, 의료, 법률 등 전문 분야의 어휘를 매핑하거나 이들 전문 분야간의 어휘를 매핑하기 위한 실마리를 제공할 수 있을 것으로 기대된다. 하지만 학계에서 주로 연구되어 온 선형 기반 벡터 정렬은 기본적으로 통계적 선형성을 가정하기 때문에, 본질적으로 상이한 형태의 벡터 공간을 기하학적으로 유사한 것으로 간주하는 가정으로 인해 정렬 과정에서 필연적인 왜곡을 야기한다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 데이터의 비선형성을 효과적으로 학습하는 딥러닝 기반 벡터 정렬 방법론을 제안한다. 제안 방법론은 서로 다른 공간에서 벡터로 표현된 전문어 임베딩을 범용어 임베딩 공간에 정렬하는 스킵연결 오토인코더와 회귀 모델의 순차별 학습으로 구성되며, 학습된 두 모델의 추론을 통해 전문 어휘를 범용어 공간에 정렬할 수 있다. 제안 방법론의 성능을 검증하기 위해 2011년부터 2020년까지 수행된 국가 R&D 과제 중 '보건의료' 분야의 문서 총 77,578건에 대한 실험을 수행한 결과, 제안 방법론이 기존의 선형 벡터 정렬에 비해 코사인 유사도 측면에서 우수한 성능을 나타냄을 확인하였다.
과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.
텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.
본 논문은 "X라는 인물은 누구인가?"와 같은 질의어가 주어질 때, X라는 인물에 대한 나이, 직업, 학력 또는 특정 사건에서 X라는 인물의 역할에 대한 정보를 기술하는 문장을 인식하고 추출함으로써 해당 인물에 대한 신문 기사 내용을 요약하는 방법을 제시한다. 질의어 용어에 대해 가능한 많은 관련 문장을 추출하기 위하여 중심 벡터에 기반한 통계적 방법을 적용하였으며, 정확도와 재현율 성능을 개선하기 위해 위키피디어 같은 외부 지식을 사용한 중심 단어의 개선된 가중치 측도를 적용하였다. 실험 대상인 전자신문 말뭉치 상에서 출현 빈도수가 큰 20 인의 IT 인물에 대해 제안한 방법이 개선된 성능을 보임을 알 수 있었다.
본 논문에서는 문장의 분류에 있어 성능이 입증된 word2vec을 활용한 Convolutional Neural Network(CNN) 모델을 기반으로 하여 문서 분류에 적용 시 성능을 향상시키기 위해 doc2vec을 함께 CNN에 적용하고 기반 모델의 구조를 개선한 문서 분류 방안을 제안한다. 먼저 토큰화 방법을 선정하기 위한 초보적인 실험을 통하여, 어절 단위, 형태소 분석, Word Piece Model(WPM) 적용의 3가지 방법 중 WPM이 분류율 79.5%를 산출하여 문서 분류에 유용함을 실증적으로 확인하였다. 다음으로 WPM을 활용하여 생성한 단어 및 문서의 벡터 표현을 기반 모델과 제안 모델에 입력하여 범주 10개의 한국어 신문 기사 분류에 적용한 실험을 수행하였다. 실험 결과, 제안 모델이 분류율 89.88%를 산출하여 기반 모델의 분류율 86.89%보다 2.99% 향상되고 22.80%의 개선 효과를 보였다. 본 연구를 통하여, doc2vec이 동일한 범주에 속한 문서들에 대하여 유사한 문서 벡터 표현을 생성하기 때문에 문서의 분류에 doc2vec을 함께 활용하는 것이 효과적임을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.