• Title/Summary/Keyword: Word Corpus

Search Result 284, Processing Time 0.025 seconds

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

Automatic Word Spacing Using Raw Corpus and a Morphological Analyzer (말뭉치와 형태소 분석기를 활용한 한국어 자동 띄어쓰기)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • This paper proposes a method for the automatic word spacing of unsegmented Korean sentences. In our method, eojeol monograms are used for word spacing as opposed to the syllable n-grams that have been used in previous studies. The use of a Korean morphological analyzer is limited to the correction of typical word spacing errors. Our method gives a 98.06% syllable accuracy and a 94.15% eojeol recall, when 10-fold cross-validated with the Sejong corpus, after filtering out non-hangul eojeols. The processing rate is 250K eojeols or 1.8 MB per second on a typical personal computer. Syllable accuracy and eojeol recall are related to the size of the eojeol dictionary, better performance is expected with a bigger corpus.

Judging Translated Web Document & Constructing Bilingual Corpus (웹 번역문서 판별과 병렬 말뭉치 구축)

  • Jee-hyung, Kim;Yill-byung, Lee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.787-789
    • /
    • 2004
  • People frequently feel the need of a general searching tool that frees from language barrier when they find information through the internet. Therefore, it is necessary to have a multilingual parallel corpus to search with a word that includes a search keyword and has a corresponding word in another language, Multilingual parallel corpus can be built and reused effectively through the several processes which are judgment of the web documents, sentence alignment and word alignment. To build a multilingual parallel corpus, multi-lingual dictionary should be constructed in each language and HTML should be simplified. And by understanding the meaning and the statistics of document structure, judgment on translated web documents will be made and the searched web pages will be aligned in sentence unit.

  • PDF

The Ratios of CEFR-J Vocabulary Usage Compared with GSL and AWL in Elementary EFL Classrooms and Suggestions of Vocabulary Items to be Taught

  • Ohashi, Yukiko;Katagiri, Noriaki
    • Asia Pacific Journal of Corpus Research
    • /
    • v.1 no.1
    • /
    • pp.61-94
    • /
    • 2020
  • The present study examined vocabulary usage in elementary English classrooms in Japan using elementary school corpus. The authors used three wordlists to benchmark the lexical items for four classes in the corpus: the CEFR-J, the General Service List (GSL), and Academic Word List (AWL). The percentage of vocabulary usage belonging to the Level A1 in the CEFR-J was below 15% (Class A: 12.1%, Class B: 12.6%, Class C: 8.9%, and Class D: 13.6%) with no statistical difference between levels. The mean ratio of Level A2 vocabulary items was below 10%, and all classes showed less than 1% of vocabulary usage for the Levels B1 and B2. Over 70% of all vocabulary items in the corpus belonged to the most frequent 1,000-word band (level 1) of the GSL, while the next most frequent word band (level 2 of the GSL and AWL) accounted for less than 10%. The results suggest that elementary school English teachers should use more vocabulary items in the CEFR-J Level A1. The findings demonstrate that elementary school teachers are less likely to expose their pupils to grammatically well-structured sentences with an abundance of lexical items since the teachers repeatedly use the same lexemes in each class.

Extracting Multiword Sentiment Expressions by Using a Domain-Specific Corpus and a Seed Lexicon

  • Lee, Kong-Joo;Kim, Jee-Eun;Yun, Bo-Hyun
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.838-848
    • /
    • 2013
  • This paper presents a novel approach to automatically generate Korean multiword sentiment expressions by using a seed sentiment lexicon and a large-scale domain-specific corpus. A multiword sentiment expression consists of a seed sentiment word and its contextual words occurring adjacent to the seed word. The multiword sentiment expressions that are the focus of our study have a different polarity from that of the seed sentiment word. The automatically extracted multiword sentiment expressions show that 1) the contextual words should be defined as a part of a multiword sentiment expression in addition to their corresponding seed sentiment word, 2) the identified multiword sentiment expressions contain various indicators for polarity shift that have rarely been recognized before, and 3) the newly recognized shifters contribute to assigning a more accurate polarity value. The empirical result shows that the proposed approach achieves improved performance of the sentiment analysis system that uses an automatically generated lexicon.

A Study on the Voice Onset Times of the Buckeye Corpus Stops (벅아이 코퍼스 파열음의 성대진동 개시시간 연구)

  • Park, Soo Hee;Yoon, Kyuchul
    • Phonetics and Speech Sciences
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • The purpose of this work is to examine the voice onset times(VOTs) of the voiceless and voiced stops from the ten young male speakers of the Buckeye corpus[9]. The factors that are known to affect VOTs were also extracted, including the place of articulation, height of following vowels, location within word, presence of a preceding [s], status of the target word with respect to the content versus function word, presence of a syllabic stress, word frequency and speech rate. Findings from this work mostly agreed with those from earlier studies on English, but with some exceptions and new discoveries. We hope that this work can contribute to figuring out the nature and properties of the spontaneous speech of English.

The effects of corpus-based vocabulary tasks on high school students' English vocabulary learning and attitude (코퍼스를 기반으로 한 어휘 과제가 고등학생의 영어 어휘 학습과 태도에 미치는 영향)

  • Lee, Hyun Jin;Lee, Eun-Joo
    • English Language & Literature Teaching
    • /
    • v.16 no.4
    • /
    • pp.239-265
    • /
    • 2010
  • This study investigates the effects of corpus-based vocabulary tasks on the acquisition of English vocabulary in an attempt to explore the influence of corpus use on EFL pedagogy. For this to be realized, a total of 40 Korean high school students participated in the study over a 4-week period. An experimental group used a set of corpus-based tasks for vocabulary learning, whereas a control group carried out a traditional task (i.e., the L1-L2 translation) for vocabulary learning. To assess learning gains, the students were asked to complete the pre- and post-treatment tests measuring the word form, meaning, and use aspects of target lexical items. Results of the study indicate that in the experimental group the corpus-based vocabulary tasks were beneficial for the learning of word forms and use. In particular, corpus-based benefits were greatest in the low-proficiency EFL learners' collocational aspects of vocabulary use. On the other hand, in the control group, the traditional vocabulary tasks benefited the meaning aspects of target vocabulary items the most. In addition, survey results revealed that most students were positive about the corpus-based learning experience although some expressed reservations about the heavy cognitive load and the time-consuming nature of the analysis of corpus data primarily due to learners' lack of language proficiency.

  • PDF

Vocabulary Coverage Improvement for Embedded Continuous Speech Recognition Using Knowledgebase (지식베이스를 이용한 임베디드용 연속음성인식의 어휘 적용률 개선)

  • Kim, Kwang-Ho;Lim, Min-Kyu;Kim, Ji-Hwan
    • MALSORI
    • /
    • v.68
    • /
    • pp.115-126
    • /
    • 2008
  • In this paper, we propose a vocabulary coverage improvement method for embedded continuous speech recognition (CSR) using knowledgebase. A vocabulary in CSR is normally derived from a word frequency list. Therefore, the vocabulary coverage is dependent on a corpus. In the previous research, we presented an improved way of vocabulary generation using part-of-speech (POS) tagged corpus. We analyzed all words paired with 101 among 152 POS tags and decided on a set of words which have to be included in vocabularies of any size. However, for the other 51 POS tags (e.g. nouns, verbs), the vocabulary inclusion of words paired with such POS tags are still based on word frequency counted on a corpus. In this paper, we propose a corpus independent word inclusion method for noun-, verb-, and named entity(NE)-related POS tags using knowledgebase. For noun-related POS tags, we generate synonym groups and analyze their relative importance using Google search. Then, we categorize verbs by lemma and analyze relative importance of each lemma from a pre-analyzed statistic for verbs. We determine the inclusion order of NEs through Google search. The proposed method shows better coverage for the test short message service (SMS) text corpus.

  • PDF

Building an Annotated English-Vietnamese Parallel Corpus for Training Vietnamese-related NLPs

  • Dien Dinh;Kiem Hoang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.103-109
    • /
    • 2004
  • In NLP (Natural Language Processing) tasks, the highest difficulty which computers had to face with, is the built-in ambiguity of Natural Languages. To disambiguate it, formerly, they based on human-devised rules. Building such a complete rule-set is time-consuming and labor-intensive task whilst it doesn't cover all the cases. Besides, when the scale of system increases, it is very difficult to control that rule-set. So, recently, many NLP tasks have changed from rule-based approaches into corpus-based approaches with large annotated corpora. Corpus-based NLP tasks for such popular languages as English, French, etc. have been well studied with satisfactory achievements. In contrast, corpus-based NLP tasks for Vietnamese are at a deadlock due to absence of annotated training data. Furthermore, hand-annotation of even reasonably well-determined features such as part-of-speech (POS) tags has proved to be labor intensive and costly. In this paper, we present our building an annotated English-Vietnamese parallel aligned corpus named EVC to train for Vietnamese-related NLP tasks such as Word Segmentation, POS-tagger, Word Order transfer, Word Sense Disambiguation, English-to-Vietnamese Machine Translation, etc.

  • PDF

A Corpus-based English Syntax Academic Word List Building and its Lexical Profile Analysis (코퍼스 기반 영어 통사론 학술 어휘목록 구축 및 어휘 분포 분석)

  • Lee, Hye-Jin;Lee, Je-Young
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.132-139
    • /
    • 2021
  • This corpus-driven research expounded the compilation of the most frequently occurring academic words in the domain of syntax and compared the extracted wordlist with Academic Word List(AWL) of Coxhead(2000) and General Service List(GSL) of West(1953) to examine their distribution and coverage within the syntax corpus. A specialized 546,074 token corpus, composed of widely used must-read syntax textbooks for English education majors, was loaded into and analyzed with AntWordProfiler 1.4.1. Under the parameter of lexical frequency, the analysis identified 288(50.5%) AWL word forms, appeared 16 times or more, as well as 218(38.2%) AWL items, occurred not exceeding 15 times. The analysis also indicated that the coverage of AWL and GSL accounted for 9.19% and 78.92% respectively and the combination of GSL and AWL amounted to 88.11% of all tokens. Given that AWL can be instrumental in serving broad disciplinary needs, this study highlighted the necessity to compile the domain-specific AWL as a lexical repertoire to promote academic literacy and competence.