• Title/Summary/Keyword: Wood-biomass

Search Result 408, Processing Time 0.027 seconds

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment (초임계수에 의한 현사시나무의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Kyu-Sung;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.44-50
    • /
    • 2006
  • To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.

Changes in Activities of Lignin Degrading Enzymes and Lignin Content During Degradation of Wood Chips by Polyporus brumalis (겨울우산버섯에 의한 목재칩의 리그닌 분해 효소 활성 및 리그닌 함량 변화)

  • Cho, Myung-Kil;Ryu, Sun-Hwa;Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.424-430
    • /
    • 2012
  • In this study, laccase activity, rate of weight loss and degree of lignin degradation of pine wood chips were determined during the liquid and solid state incubation with Polyporus brumalis. The results showed that laccase enzyme activity at untreated wood chip was gradually decreased after 20 days, but enzyme activity with wood chip treatment showed 10 times higher than untreated ones at 60 incubation days. Rate of weight losses of pine chip and rate of lignin loss were 23.4% and 6.3% by P. brumalis during 80 incubation days. Gene expression of pblac1 from P. brumalis was 3 times increased under pine chip treatment at 40 incubation days. Consequently, laccase activity of white rot fungi, P. brumalis, was increased at incubation with wood chip and pblac1 gene was important factor of lignin degradation. Therefore, to regulate lignin degrading enzyme gene expression by using the tools of biotechnology will be able to develop superior strains and it will be useful for pretreatment of lignocellulosic biomass at bioethanol production.

Development of a Combustor in Portable Pellet Stoves Using Wood Pellets to Improve Combustion Efficiency and to Reduce Carbon Monoxide (CO) Emission (목재 펠릿(pellet)을 활용하는 휴대용 펠릿 난로의 연소 효율 향상과 일산화탄소(CO) 배출 저감을 위한 연소기 개발)

  • Min, Kyoung-Soon;Lim, Dae-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.315-320
    • /
    • 2020
  • Pellets are manufactured using wood by-products. The combustion efficiency of pellets depends on the pellet manufacturing process, the types of materials mixed while manufacturing and the wood pellet stoves themselves. In this study, we developed a multi-layer combustor to be used in a wood pellet stove, for the purpose of reducing environmental pollution and energy waste due to incomplete combustion. The multi-layer combustor was designed to compensate for the shortcomings of existing combustors. A CAD (Computer Aided Design) model was verified using a 3D printer and a prototype was developed. The combustion experiments were conducted on commercial and proposed combustors using pellets of the same brand, manufacturing date, place and specifications. From the experiments, it was found that the proposed combustor produced the lowest carbon monoxide (CO) emission and highest thermal efficiency.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products (급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향)

  • Hwang, Hyewon;Oh, Shinyoung;Kim, Jae-Young;Lee, Soomin;Cho, Taesu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.445-453
    • /
    • 2012
  • In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

Emission Characteristics of Air Pollutants and Black Carbon from Wood Stove and Boiler (화목 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성)

  • Park, Sung Kyu;Choi, Sang Jin;Kim, Dae keun;Kim, Dong Young;Jang, Young Kee;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • Manually fed firewood burning appliances, i.e., stove and boiler, were tested in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the wood stove were: for TSP 15.45 g/kg, for $PM_{10}$ 6.53 g/kg, $PM_{2.5}$ 4.16 g/kg, CO 175.49 g/kg, NO 1.58 g/kg, $SO_2$ 0.15 g/kg, TVOC 48.02 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the wood boiler appliance: for TSP 12.23 g/kg, for $PM_{10}$ 5.84 g/kg, $PM_{2.5}$ 3.66 g/kg, CO 146.74 g/kg, NO 1.42 g/kg, $SO_2$ 0.15 g/kg, TVOC 47.78 g/kg, $NH_3$ 0.01 g/kg.

Development of a Basic Wood Density for Carbon Accounting in Bamboo Forests (대나무 탄소계정을 위한 목재기본밀도 개발)

  • Eunji Hae;Jaeyeop Chung;Sunjung Lee;Hyejung Roh;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • This study aimed to derive the basic wood density, one of several carbon emission factors, for carbon accounting of bamboo forests in Korea. Bamboo is mainly distributed in Jeollanam-do and Gyeongsangnam-do provinces, and 101 sample trees were selected for each of the three species (Phyllostachys nigra var. henonis, P. bambusoides, and P. pubescens). The basic wood density derivation used the KS F 2098 method. The measurements showed that the basic wood density was 0.83 g/cm3 for P. nigra var. henonis, 0.81 g/cm3 for P. bambusoides, and 0.72 g/cm3 for P. pubescens. However, the bamboo distribution area in Korea is not very large, and P. pubescens grows in one area only. Therefore, the basic wood density that can be applied to bamboo was 0.79 g/cm3. Evaluation of the uncertainty of the extracted basic wood density showed a very low value of 1.61%, which confirmed the reliability of the basic wood density derived from this analysis. The basic wood density, biomass expansion factor, and root-to-shoot ratio were used to calculate the carbon storage capacity of one bamboo plant and expanded to calculate the capacity for a hectare of bamboo. Carbon storage and absorption of bamboo were calculated by applying a carbon-emission factor, such as the basic wood density. These study results are expected to contribute to the carbon-neutral policy and forest management direction in Korea.

Environmental Assessment and Characteristic of Refuse Derived Fuel by Mixed Biomass with Binder (바이오매스에 바인더 첨가에 따른 폐기물 고형연료 특성 및 환경성평가)

  • Lee, Hyung-Don;Cho, Joon-Hyung;Kim, In-Deuk;Kim, Yun-Soo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.336-345
    • /
    • 2011
  • The total area of forest land in Korea is 64.2%, and significant forest resources can continuously be produced. However our country didn't separate the recyclable waste wood and was illegal landfill or incinerated. In this study, waste-wood and rice husk of biomass and low-grade-anthracite made refuse derived fuel by mixing and compressing. In addition, the binding effect of binders and additives were analyzed. Physical and chemical characteristics of manufactured refuse derived fuel were analyzed and evaluated suitability by compared with quality standards. A result of change with compressed and relaxed density, added 20% anthracite and 10% rice husk is optimal density change and average density increased large range when 20 wt.% P.V.A., guargum, molasses and 10 wt.% starch were added. All fuel samples be distributed over 3,500 kcal/kg LHV and grade of No. 3~4 fuels appeared. A result of the characteristics of physical and chemical compressed biomass refuse derived fuel with addictive, 12.9% of durability improvement appeared when is mixing asphalt and 5.8% of durability improvement appeared when is mixing rice bran by pretreatment of NaOH 5%.

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation (폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구)

  • MinHee Won;WooRi Cho;Jin Man Chang;Jai-young Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2023
  • There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

SNG Production from Wood Biomass with Dual Fluidized-Bed Gasifier (목재 바이오매스를 활용한 이중유동층 가스화기의 SNG 생산)

  • Yoon, Hyungchul;Cho, Sungho;Lee, Dock-jin;Moon, Goyoung;Cho, Soonhaing
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.214-225
    • /
    • 2016
  • Gasification is one of the important contribution to resource recycling by conversion of biomass to a variety of energy sources such as alcohol, SNG etc., and to global warming prevention by reduction of green house gases such as $CO_2$. The aim of this study is to draw the optimal operation condition of dual fluidized-bed gasifier with biomass fuel, to verify SNG production efficiency and to establish the basis for the domestic commercialization of dual fluidized bed gasification. As a result, dual fluidized-bed gasifier has the optimal conditions at $826^{\circ}C$ with steam input 1,334 g/hr, air input 5.56 L/min. The carbon conversion is 81% and SNG production efficiency was $CH_4$ 92%.