• Title/Summary/Keyword: Wobble Motor

Search Result 12, Processing Time 0.014 seconds

Development of an Effective Walking System for a Hexapod Robot on Uneven Terrain (오프로드 환경에서 효율적인 6족 로봇 보행 시스템 개발)

  • Kim, Jun Woo;Lee, Gi Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1152-1159
    • /
    • 2013
  • This paper proposes an effective walking system for a hexapod robot on uneven terrain. To overcome the deficiencies of two-pair walking systems, which are effective on even terrain, the use of only three legs changes the steps required for movement. The proposed system receives feedback data from switches attached to the bottom of the legs and gyro sensor to carry out stable walking using the Bezier curve algorithm. From the coordinates of the Bezier curve, which guarantees the circular motion of legs, the motor's angle value can be obtained using inverse kinematics. The angle values are sent to each motor though RS-485 communication. If a switch is pushed by the surface during navigation in the Bezier curve pattern, the robot is designed to change its circular course. Through the changed course, each leg can be located on an optimal surface and the wobble phenomenon is reduced by using a normal vector algorithm. The simulation and experiment results show the efficiency of the proposed algorithm.

Micro Polishing Force Control of the Polishing Machine with the Airbag Tool (에어백 공구 기반의 광학 연마 장치의 미세 힘 제어 구현)

  • Lee, Ho-Cheol;Lee, Chang-Eun;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.714-719
    • /
    • 2012
  • In this paper, the polishing force monitoring and the control method were implemented for the polishing machine with the airbag tool. Airbag tool has been known to be adaptable to the curvature variation such as the aspherical and the free-form surface. However, it was necessary to control the tool movement of vertical axis also because of the table rotational wobble and vibration. To solve it by the polishing force control, we installed another stepping motor to the z-axis. And the polishing force was measured with the load cell and controlled by the PID Labview controller. A few hundreds gram of the polishing force were well controlled under 0.8 second of the response time and 5% variation. An experiment was done to clean the edge burrs of the micro channel structure of width $87{\mu}m$ using the polishing force control.