• 제목/요약/키워드: Wnt-7a.

검색결과 42건 처리시간 0.023초

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할 (The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1245-1255
    • /
    • 2017
  • 암세포는 정상세포와는 다른 metabolism 특히 glycolytic switch를 나타낸다. Glycolytic switch는 암세포가 정상세포와 달리 산소가 충분한 상태에서도 미토콘드리아에 의존하지 않고 glycolysis를 통해 대부분의 ATP 에너지를 생성하는 현상이다. 또한 암세포는 invasion 및 metastasis 능력을 획득하기 위해 epithelial-mesenchymal transition (EMT)를 나타낸다. EMT와 glycolytic switch는 암세포의 생존 및 증식에 관여하는 중요한 현상이지만, 이들 상호작용 및 그 기작에 대한 연구는 아직 밝혀져 있지 않다. Snail은 EMT를 유도하는 주요한 전사인자이다. 본 연구진은 이전 연구에서 Snail이 발생 및 암성장에 관여하는 전사인자인 Dlx-2에 의해 조절됨을 밝혔다. 또한 Wnt가 Dlx-2/Snail cascade을 통하여 EMT 및 glycolytic switch을 유도함을 밝혔다. 본 연구에서는 glycolytic switch가 Wnt에 의한 EMT에 미치는 영향을 규명하고자 하였다. Dlx-2/Snail의 glycolytic switch target 유전자로 phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2)를 발굴하였다. PFKFB2는 fructose-2,6-bisphosphate (F2,6BP)의 합성 및 분해에 관여하는 효소로서 glycolysis에서 중요하게 작용한다. Wnt에 의해 PFKFB2 발현이 Dlx-2/Snail 의존적으로 증가함을 관찰하였다. 또한 PFKFB2를 knockdown한 결과 Wnt에 의한 EMT가 억제되므로 glycolytic switch가 Wnt에 의한 EMT에 관여할 가능성이 높을 것으로 보인다. 뿐만 아니라 PFKFB2 shRNA가 xenograft mouse model에서 tumor 성장 및 metastasis를 억제하는 것으로 나타났다. 또한 Human 암조직에서 정상조직에 비해 PFKFB2의 발현이 높음을 관찰하였다. 따라서 PFKFB2가 Wnt-Dlx-2/Snail-induced EMT 및 metastasis에서 중요한 역할을 할 것으로 예상된다.

Anti-inflammatory Effect of Flower Bud and Fruit of Sweet Persimmon, Diospyros kaki T.

  • Park, Yeo Ok;Lee, Jeong Ah;Park, Seong Moon;Ha, Min Hee;Joo, Woo Hong;Kim, Dong Wan
    • 대한의생명과학회지
    • /
    • 제26권2호
    • /
    • pp.85-92
    • /
    • 2020
  • Various beneficial effects of sweet persimmon (Diospyros kaki T.) including anti-oxidation, anti-bacteria and viruses, anti-allergy were widely reported previously. However, the anti-inflammatory effect and its molecular mechanisms are not clear. In this study, the anti-inflammatory effect of the extracts of flower bud and fruit of sweet persimmon was investigated in LPS-treated RAW264.7 cells. Both extracts of flower bud and fruit showed strong inhibitory effect on the LPS-induced NF-κB activation. IκBα, the inhibitor of NF-κB, was increased and the expressions of NF-κB target genes, COX-2 and iNOS, were suppressed by the treatment with the extracts of flower bud and fruit. The expressions of pro-inflammatory cytokines, IL-1β, IL-6, TNF-α were also suppressed by the extracts. In addition, the LPS-induced wnt/β-catenin pathway and its related gene expressions including cyclin D1, wnt 3a, wnt 5a were suppressed by the extracts. The extracts also showed anti-oxidant activity and suppressive effect on the LPS-induced apoptosis of RAW264.7 cells. These results suggest that the flower bud and fruit of sweet persimmon display strong anti-inflammatory effect through inhibiting the pro-inflammatory signaling pathways in the cells.

Isolation and Structure Determination of an Imidazo-pyrimidine, 5-Chlorocavernicolin, Maleimide oximes and Nucleosides from a Marine Sponge Extract

  • Kulkarni, Roshan R.;Kim, Jang Hoon;Kim, Young Ho;Oh, Sangtaek;Na, MinKyun
    • Natural Product Sciences
    • /
    • 제21권1호
    • /
    • pp.25-29
    • /
    • 2015
  • In a continuation of our studies to discover bioactive secondary metabolites from marine sources, we further investigated samples from a tryptamine and phenyl-alkane producing sponge, which resulted in the isolation of four uncommon small molecules and five nucleosides. Their structures were determined to be 7,8-dihydroimidazo[1,5-c]pyrimidin-5(6H)-one (1), 5-chlorocavernicolin (2), maleimide-5-oxime (3), 3-methylmaleimide-5-oxime (4), uridine (5), 2'-deoxyuridine (6), thymidine (7), adenine (8), and adenosine (9) by spectroscopic analyses. The isolated compounds were evaluated for inhibitory activity against soluble epoxide hydrolase (sEH) as well as the Wnt/${\beta}$-catenine signaling pathway.

Effect of Wnt signaling pathway activation on the efficient generation of bovine intestinal organoids

  • Park, Kang Won;Yang, Hyeon;Wi, Hayeon;Ock, Sun A;Lee, Poongyeon;Hwang, In-Sul;Lee, Bo Ram
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.136-143
    • /
    • 2022
  • Recent progress has been made to establish intestinal organoids for an in vitro model as a potential alternative to an in vivo system in animals. We previously reported a reliable method for the isolation of intestinal crypts from the small intestine and robust three-dimensional (3D) expansion of intestinal organoids (basal-out) in adult bovines. The present study aimed to establish next-generation intestinal organoids for practical applications in disease modeling-based host-pathogen interactions and feed efficiency measurements. In this study, we developed a rapid and convenient method for the efficient generation of intestinal organoids through the modulation of the Wnt signaling pathway and continuous apical-out intestinal organoids. Remarkably, the intestinal epithelium only takes 3-4 days to undergo CHIR (1 µM) treatment as a Wnt activator, which is much shorter than that required for spontaneous differentiation (7 days). Subsequently, we successfully established an apical-out bovine intestinal organoid culture system through suspension culture without Matrigel matrix, indicating an apical-out membrane on the surface. Collectively, these results demonstrate the efficient generation and next-generation of bovine intestinal organoids and will facilitate their potential use for various purposes, such as disease modeling, in the field of animal biotechnology.

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5501-5508
    • /
    • 2014
  • Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

The Role of Autonomous Wntless in Odontoblastic Differentiation of Mouse Dental Pulp Cells

  • Choi, Hwajung;Kim, Tak-Heun;Ko, Seung-O;Cho, Eui-Sic
    • Journal of Korean Dental Science
    • /
    • 제9권1호
    • /
    • pp.9-18
    • /
    • 2016
  • Purpose: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin. Materials and Methods: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction. Result: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout. Conclusion: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.

The Effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from Lobophyyum sp. on the Apoptosis Induction of SNU-C5 Human Colorectal Cancer Cells

  • Kim, Eun-Ji;Kang, Jung Il;Tung, Nguyen-Huu;Kim, Young-Ho;Hyun, Jin Won;Koh, Young Sang;Chang, Weon-Young;Yoo, Eun Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.623-629
    • /
    • 2016
  • (1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1could result from apoptosis via the modulation of $Wnt/{\beta}$-catenin and the TGF-${\beta}$ pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of $Wnt/{\beta}$-catenin signaling pathway via the decrease of GSK-$3{\beta}$ phosphorylation followed by the decrease of ${\beta}$-catenin level. In addition, the LS-1 induced the activation of TGF-${\beta}$ signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of $Wnt/{\beta}$-catenin pathway and the activation of TGF-${\beta}$ pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.