• 제목/요약/키워드: Wnt proteins

검색결과 38건 처리시간 0.022초

Therapeutic Potentiality of Celtis choseniana Nakai on Androgenic Alopecia through Repression of Androgen Action and Modulation of Wnt/β-catenin Signaling

  • Hui-Ju Lee;Geum-Lan Hong;Kyung-Hyun Kim;Yae-Ji Kim;Tae-Won Kim;Ju-Young Jung
    • Natural Product Sciences
    • /
    • 제29권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, we investigated the efficacy of Celtis choseniana Nakai (C. choseniana) as complementary herbal medicine to ameliorate androgenic alopecia (AGA). The effects of C. choseniana on AGA were evaluated using testosterone propionate-induced AGA mouse model and dihydrotestosterone-treated human hair follicle dermal papilla cells. In vivo, C. choseniana treatment deactivated androgen signaling by reducing the concentration of serum dihydrotestosterone level and expressions of 5α-reductase 2 and androgen receptor. Next, C. choseniana treatment increased the hair regrowth rate. Histological studies demonstrated that C. choseniana induced the anagen phase in testosterone propionate-induced AGA mouse model. Cellular proliferation was promoted by C. choseniana treatment via increasing the expression of proliferation factors, such as proliferating cell nuclear antigen and cyclin D1. Furthermore, C. choseniana treatment increased the expression of proteins related to the Wnt/β-catenin signaling pathway. In addition, dickkopf-1, a Wnt inhibitor, was downregulated with C. choseniana treatment. Likewise, C. choseniana treatment promoted cellular proliferation in vitro. This study demonstrated the inhibitory effect of C. choseniana on androgen-induced AGA. Moreover, C. choseniana induced activation of Wnt/β-catenin signaling, resulting in prolonged anagen and cellular proliferation. Therefore, we suggest that C. choseniana can be used as a therapeutic agent to alleviate AGA.

밀기울의 모발 성장 효과 (The Hair Growth Effects of Wheat Bran)

  • 강정일;문정선;김은지;이영기;고영상;유은숙;강희경;임동술
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim;Kyeong-Bae Jeon;Hyo-Min Park;Jinju Kim;Chae-Min Lim;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.506-515
    • /
    • 2024
  • Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

Non-Polar Myxococcus fulvus KYC4048 Metabolites Exert Anti-Proliferative Effects via Inhibition of Wnt/β-Catenin Signaling in MCF-7 Breast Cancer Cells

  • Park, Juha;Yoo, Hee-Jin;Yu, Ah-Ran;Kim, Hye Ok;Park, Sang Cheol;Jang, Young Pyo;Lee, Chayul;Choe, Wonchae;Kim, Sung Soo;Kang, Insug;Yoon, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.540-549
    • /
    • 2021
  • The Wnt/β-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/β-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, β-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/β-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/β-catenin pathway.

Secondary Structure, 1H, 13C and 15N Resonance Assignments and Molecular Interactions of the Dishevelled DIX Domain

  • Capelluto, Daniel G.S.;Overduin, Michael
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.243-247
    • /
    • 2005
  • Dishevelled (Dvl) is a positive regulator of the canonical Wnt signaling pathway, which regulates the levels of $\beta$-catenin. The $\beta$-catenin oncoprotein depends upon the association of Dvl and Axin proteins through their DIX domains, and its accumulation directs the expression of specific developmental-related genes at the nucleus. Here, the $^1H$, $^{13}C$, and $^{15}N$ resonances of the human Dishevelled 2 DIX domain are assigned using heteronuclear nuclear magnetic resonance (NMR) spectroscopy. In addition, helical and extended elements are identified based on the NMR data. The results establish a structural context for characterizing the actin and phospholipid interactions and binding sites of this novel domain, and provide insights into its role in protein localization to stress fibers and cytoplasmic vesicles during Wnt signaling.

Coexpression and protein-protein complexing of DIX domains of human Dvl1 and Axin1 protein

  • Choi, Seung-Hye;Choi, Kyung-Mi;Ahn, Hyung-Jun
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.609-613
    • /
    • 2010
  • The Dvl and Axin proteins, which are involved in the Wnt signaling pathway, each contain a conserved DIX domain in their sequences. The DIX domain mediates interaction between Dvl and Axin, which together play an important role in signal transduction. However, the extremely low production of DIX domain fragments in E. coli has prevented more widespread functional and structural studies. In this study, we demonstrate that the DIX domains of Dvl and Axin are expressed noticeably in a multi-cistronic system but not in a mono-cistronic system. Formation of the $DIX_{Dvl1}-DIX_{Axin1}$ complex was investigated by affinity chromatography, SEC and crystallization studies. Unstable DIX domains were stabilized by complexing with counterpart DIX domains. The results of the preliminary crystallization and diffraction of the $DIX_{Dvl1}-DIX_{Axin1}$ complex may prove useful for further crystallographic studies.

Clitocybin A의 모유두 세포증식 효능 (Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells)

  • 강정일;김민경;유은숙;유익동;강희경
    • 생약학회지
    • /
    • 제45권4호
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Immunohistochemical Analysis of TBX3 and $\beta$-catenin in Gastric Cancers

  • Song, Jae-Hwi;Yoon, Jung-Hwan;Kang, Young-Hwi;Cao, Zhang;Nam, Suk-Woo;Lee, Jung-Young;Park, Won-Sang
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.328-334
    • /
    • 2009
  • TBX3 has demonstrated oncogenic activity as a downstream target of the Wnt/$\beta$-catenin signaling pathway. In this study, the aim was to determine whether overexpression of the TBX3 protein is involved in the development and/or progression of gastric cancers. We analyzed the expression pattern of the TBX3 and $\beta$-catenin proteins in a series of 186 sporadic gastric cancers. Altered expression of the TBX3 and $\beta$-catenin proteins was observed in 54 (29.0%) and 48 (25.8%) of the 186 gastric cancers. Statistically, overexpression of the TBX3 and $\beta$-catenin proteins was not associated with the clinical and pathological parameters studied including: histological type, tumor location, tumor size, and the 5-year survival (P>0.05). However, TBX3 overexpression was closely associated with lymph node metastasis and aberrant $\beta$-catenin expression (P<0.05). In addition, overexpression of the TBX3 protein was confirmed by Western blot analysis of primary gastric cancer tissues and cell lines. These data suggest that TBX3 overexpression may play a role in the development and progression of sporadic gastric cancers.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

콩제비꽃 전초 추출물의 모유두세포 증식 기전 (The Mechanism of Whole Plant Extract of Viola verecunda on the Proliferation of Dermal Papilla Cells)

  • 강정일;서민정;최윤경;신수영;황용;고재덕;유은숙;김상철;강희경
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.34-40
    • /
    • 2021
  • Proliferation and maintain of dermal papilla during progression of hair-cycle are crucial to the duration of anagen and regulated by diverse signaling pathway such as PI3K/Akt/Wnt/β-catenin pathway. In this study, we investigated the effects and mechanisms of Viola verecunda on dermal papilla cells. Treatment of dermal papilla cells with whole plant extract of V. verecunda resulted in cell proliferation, which was accompanied by up-regulation of cyclin D1, phospho (ser780)-pRB and cdc2 p34, and down-regulation of p27kip1. V. verecunda extract also promoted the levels of phospho (ser473)-Akt and phospho (ser780)-pRB in a time-dependent manner. Inhibition of PI3K/Akt by Wortmannin suppressed progression of cell-cycle, thereby attenuated the increases in proliferation of dermal papilla cells by V. verecunda extract. We further investigated Wnt/β-catenin pathway with respect to the effects of V. verecunda extract on the proliferation of dermal papilla cells. Treatment with V. verecunda extract results in up-regulation of Wnt/β-catenin proteins such as phospho (ser9)-GSKβ, phospho (ser552)-β-catenin and phospho (ser675)-β-catenin. In addition, Wortmannin abrogated V. verecunda extract mediated up-regulation of cdc2 p34 and down-regulation of p27kip1. These finding reveal that the proliferative effect of V. verecunda mediated by alteration of cell-cycle via activating PI3K/Akt/Wnt pathway in dermal papilla cells.