• Title/Summary/Keyword: Withanolides

Search Result 9, Processing Time 0.029 seconds

Novel Withanolides from the Flowers of Datura tatula

  • Srivastava, Anjani;Manickam, M.;Sinha-Bagchia, A.;Sinhaa, S.C.;Ray, A.B.
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 1996
  • Three new withanolides, designated as withatatulins B, C, and D, were isolated from the fresh flowers of Datura tatula Linn. Detailed spectral analysis of these compounds permitted advancement of their structures respectively, as $5{\beta},6{\beta}-epoxy-12{\beta}$,21-dihydroxy-1-oxo-witha-2,24-dienolide (2), $6{\beta},12{\beta},21-trihydroxy-1-oxowitha$ 2, 4,24-trienolide (3) and $5{\beta},6{\beta},12{\beta}$,21-tetrahydroxy-1-oxo-witha-2,24-dienolide (4a). Withanolides with oxygen functions both at 12 and 21-positions are rare and first reported from Datura species.

  • PDF

Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera)

  • Lee, Seoung Rak;Lee, Bum Soo;Yu, Jae Sik;Kang, Heesun;Yoo, Min Jeong;Yi, Sang Ah;Han, Jeung-Whan;Kim, Sil;Kim, Jung Kyu;Kim, Jin-Chul;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.357-366
    • /
    • 2022
  • Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides GeI (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.

Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal)

  • Sabir, Farzana;Sangwan, Rajender S.;Singh, Jyoti;Misra, Laxmi N.;Pathak, Neelam;Sangwan, Neelam S.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2011
  • The biotransformation potential of cell suspension cultures generated from Withania somnifera leaf was investigated, using withanolides, i.e. withanolide A, withaferin A, and withanone as precursor substrates. Interestingly, the cell suspension cultures showed inter-conversion of withanolides, as well converted to some unknown compounds, released to the culture media. The bio-catalyzed withanolide was detected and quantified by TLC and HPLC, respectively. There is noticeable conversion of withanolide A to withanone, and vice versa though at a lower level. The type of reaction of this biotransformation appears to be substitution of 20-OH group to 17-OH in withanolide A. In this paper, we present for the first time the possibility of biotransformation by inter-conversion of withanolides of pharmacological importance through cell suspension culture of W. somnifera. The possible role of putative cytochrome $P_{450}$ hydroxylases is implicated in the conversion.

Establishment of in vitro Root Cultures and Analysis of Secondary Metabolites in Indian Ginseng - Withania somnifera

  • Wasnik, Neha G.;Muthusamy, Mahalakshmi;Chellappan, Savitha;Vaidhyanathan, Veena;Pulla, Ramakrishna;Senthil, Kalaiselvi;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.584-591
    • /
    • 2009
  • Adventitious root culture was established in the Jawahar variety of Withania somnifera using MS basal medium supplemented with 0.5 (mg/l) IAA and 2.0 (mg/l) IBA. Root tips from germinated seedlings, MS0 maintained plants and adventitious roots were maintained in suspension medium (1/2 MS basal medium supplemented with 3% sucrose) for a period of 1 to 6 months. The weight gain in roots was noted and the withanolides were extracted from the dry roots using solvents petroleum ether, 50% ethanol and chloroform. The withanolides in the chloroform fractions of all root samples analyzed were compared using thin layer chromatographic analysis. Withanolide content in adventitious root sample was found to be superior compared to other roots at any given point of time during the 6month growth period.HPLC analysis of in vitro adventitious roots showed the presence of a new compound.

Chemistry and pharmacology of withania somnifera: An update

  • Kumar, Vikas;Dey, Amitabha;Hadimani, Mallinath B.;Marcovic, Tatjana;Emerald, Mila
    • CELLMED
    • /
    • v.5 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2015
  • Withania somnifera (Ashwagandha) is an important Rasayana herb and widely considered as Indian ginseng in Ayurveda. In traditional system of Indian medicine, it is used as tonic to rejuvenate the body and increase longevity. In Ayurvedic preparations, various parts of the plant have been used to treat variety of ailments that affect the human health. However, dried roots of the plant are widely used for the treatment of nervous and sexual disorders. The major active chemical constituents of this plant are withanolides, which is responsible for its wide range of biological activities. Since the beginning of the $20^{th}$ century, a significant amount of research has been done and efforts are ongoing to further explore other bioactive constituents, and many pharmacological studies have been carried out to describe their disease preventing mechanisms. In this chapter, we have reviewed the chemistry and pharmacological basis of W. somnifera in various human ailments.

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

Components of Nutraceutical Value in Physalis minima

  • Misra, L.N.;Lal, P.;Kumar, D.
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • It is of utmost importance to feed the current world population by improving agricultural production with newer varieties of food crops, but what is still more important is to add nutrition into the food. Some of the plants, which are currently growing in the wastelands, contain certain phytochemicals which add to their neutraceutical and health value. These plants contain secondary metabolites which enhance the over all metabolic functions of the body. Withasteroids are one of such phytochemicals. These chemicals are almost exclusively found in plants of the Solanaceae family; one of which, Physalis minima, contains several with asteroids. The aerial parts and roots of P. minima have been found to contain several steroids, identification of which is been discussed in this paper. These with asteroids contribute to the functional value since incorporation of withanolides in the diet may prevent or decrease the growth of tumors in humans.

Isolation and Characterization of Steroids of Nutraceutical Value in Physalis minima

  • Misra Laxmi N.;Lal Pyare;Kumar Devinder
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • There is great demand of nutraceutical secondary metabolites in the world so as to feed the population by improving agricultural production with new varieties of food crops but what is still more important is to add nutrition into the food. Physalis minima, plant of Solanaceae family, contain certain secondary metabolites which enhance the over all metabolic functions of the body. Withasteroids are one of such phytochemicals that are generally regarded as safe. These chemicals are almost monopoly of the plants of Solanaceae. The leaves, stem and roots of P. minima have been examined to yield several steroids, identification of which has been discussed in this paper. These withasteroids contribute to the potential nutraceutical and health function value since incorporation of withanolides in the diet may prevent or decrease the growth of tumors in humans.

A bioassay system for pharmacological standardization of Withania somnifera derived herbal remedies

  • Dey, Amitabha;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.9 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Background: Contents of bioactive substances extractable from different parts of terrestrial plants vary enormously. Aim: To ascertain that parts of Withania somnifera other than its roots can also be used for prevention and cure of unavoidable stress triggered central hypersensitivity to pain. Material and Methods: Groups of male or female mice treated either with Withania somnifera extracts or with metformin, aspirin, imipramine, diazepam and niacin for 11 consecutive days were subjected to "foot-shock stress-induced hyperthermia" and "hot plate" tests on the 1st, 5th, 7th, and 10th days of the experiments. On the 11th day, they were subjected to tail suspension test and on 12th day pentobarbital hypnosis test. Results: Except for diazepam and imipramine, protective effects of all other tested drugs as well as of the Withania somnifera extracts against stress-induced central hypersensitivity to pain were accompanied by their preventive effects against foot-shock stress-induced body weight losses. All observed stress response suppressing effects of all test agents increased with increasing numbers of treatment days. However, mean duration of pentobarbital-induced sleep was shorter in the extracts treated groups and longer in the diazepam treated ones only. Conclusions: Reported observations reveal that pharmacological activity profile of Withania somnifera extracts in male and female mice are almost identical, and are not like those of several drugs currently often prescribed for the treatment of diabetes-associated comorbidities. Withanolides are not the only extractable bioactive constituents of Withania somnifera. The described bioassay system is well suited for pharmacological standardization of diverse types of Withania somnifera extracts.