• Title/Summary/Keyword: Wires

Search Result 1,518, Processing Time 0.029 seconds

A Study on Development of Superconducting Wires for a Fault Current Limiter (한류기용 초전도 선재개발에 관한 연구)

  • Hwang, Kwang-Soo;Lee, Hun-Ju;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.279-290
    • /
    • 2022
  • A superconducting fault current limiter(SFCL) is a power device that exploits superconducting transition to control currents and enhances the flexibility, stability and reliability of the power system within a few milliseconds. With a high phase transition speed, high critical current densities and little AC loss, high-temperature superconducting (HTS) wires are suitable for a resistive-type SFCL. However, HTS wires due to the lack of optimization research are rather inefficient to directly apply to a fault current limiter in terms of the design and capacity, for the existing method relied the characteristics. Therefore, in order to develop a suitable wire for an SFCL, it is necessary to enhance critical current uniformity, select optimal stabilizer materials and conducted research on the development of uniform stabilizer layering technology. The high temperature superconducting wires manufactured by this study get an average critical current of 804 A/12mm-width at the length of 710m; therefore, conducted research was able to secure economic performance by improving efficiency, reducing costs, and reducing size.

The Effects of Drawing Strain and Annealing Condition on Mechanical Properties of High Strength Steel Wires (고강도강선의 신선 가공할 및 열처리 조건이 기계적 성질에 미치는 영향)

  • Lee, J.W.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of annealing temperature and time on mechanical properties and microstructures were investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the lower annealing temperature and the increase of drawing strain caused the higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.

Effect of Geometrical shape and Cold work on Deformation and Hydrogen absorption behaivor in Palladium (팔라듐에서의 변형 및 수소흡수거동에 미치는 형상 및 가공의 영향)

  • Jung, Y.G.;Kim, K.H.;Kim, S.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.247-255
    • /
    • 2001
  • The relation between the deformation and the geometrical shape, and the effect of cold work on the hydrogen absorption behavior in palladium were investigated. The Pd specimens used were plates and wires as cold worked and annealed states. The palladium plates and wires were loaded with hydrogen by electrochemical method. Experimental analyses were carried out through X -ray diffraction, micrometer measurement and decimal balance measurement. As the results, it is found that the effect of cold work on hydrogen absorption capacity was relatively small. The deformation of the palladium plates in thickness direction is larger than in other lateral directions whereas the palladium wires showed the same deformation ratio in all radius directions because of the circular distribution of coexisting $\alpha$ and $\beta$ phases. The products of plastic deformation such as slip lines and voids etc. were observed abundantly in all specimens although the specimens had undergone only once of a hydrogen absorption and desorption.

  • PDF

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

A study on the optimum condition of electric snow melting and deicing system for the anti-freezing testing road (시험 선로 결빙 방지를 위한 전기 가열식 융설 및 융빙 시스템의 최적 조건에 관한 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.4
    • /
    • pp.362-369
    • /
    • 2008
  • The snow melting system by electric heating wires which is adopted in this research is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, installation place and each country applying the system. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitch for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature($-2^{\circ}C$, $-5^{\circ}C$), the pitches of the electric heating wires(200 mm, 300 mm), heating value($250\;W/m^2$, $300\;W/m^2$, $350\;W/m^2$).

Superconducting properties of Bi-2223 tapes with various pre-annealing conditions (전열처리 조건에 따른 Bi-2223 초전도 선재에서의 특성 변화)

  • 하동우;하홍수;오상수;이동훈;윤진국;양주생;최정규;권영길
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.176-179
    • /
    • 2003
  • A lot of efforts have been focused on the optimization of PIT parameters for Bi-2223/Ag wire. Bi-2223 superconducting wires with 55 filaments were fabricated by stacking, drawing process. Before rolling process, round wires were pre -annealed at 760 - 820 $^{\circ}C$ and low oxygen partial pressure. We confirmed that pre-annealing step was to transform Bi-2212 orthorhombic structure from Bi-2212 tetragonal structure and to reduce the formation of second phases. However Bi-2223 phases also were formed at higher than 76$0^{\circ}C$ of pre-annealing temperature. The engineering critical current densities (Je) of Bi-22231Ag tapes were sintered at low oxygen partial pressure were higher than t hat of the wires sintered at air. We could achieve 6500 A/${cm}^2$ of Je for the tape that was initially kept at slightly higher temperature than that of normal heat treatment.

  • PDF

Analysis of Thermal Characteristics for the Fire Risk Assessment According to Partial Disconnection on the VCTF and IV Electric Wire (VCTF와 IV전선의 반단선에 의한 화재위험성 평가를 위한 열적특성 해석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Park, Jong-Young;Park, Young-Ho;Lee, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Many researches on fire risk for normal electric wiring have been pursued in advanced countries such as the USA and Japan, but comparative studies of the partial disconnection and normal state of electric wires have not been conducted. Detection system for the cause of partial disconnection is not developed and prevention countermeasure for electrical fire by the cause is not effective. Therefore, in this paper, partial disconnection characteristics on electric wires were derived and analyzed by experiment and electrical-thermal finite element method(Flux 3D) on the model wires which consist of VCTF(PVC insulated PVC sheathed Cap Tyre Flexible Cord, KS C 3304) and IV(lndoorwire PVC, KS C 3302). VCTF is used in wiring portable electric appliances and the IV is used indoors. Interrelationships between partial disconnection premonitory symptom and current were derived and analyzed by the characteristics based on experiments and thermal analysis for electric wire according to current under normal state and 200% overload state of rated current.

Fabrication of Embedded Thermocouple Sensor and Experimental Study on Measurement of Interface Temperature for Dry Friction (임베디드 서모커플 센서 제조 및 미끄럼 마찰 계면온도 측정에 관한 실험적 연구)

  • Jang, Beomtaek;Lim, Youngheon;Kim, Seocksam
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.372-377
    • /
    • 2013
  • This study investigated the interface temperatures for the sliding friction of three types of pins fabricated with thermocouple wires by the suction casting method. Optical microscopy was used to examine the surrounding material state at the bonding interface with the thermocouple wires. Friction tests were performed under dry sliding conditions against stainless steel 304 at nominal stresses of 1.42-4.25 MPa and sliding speeds of 0.5-1.25 m/s. Tribological data were collected using a custom-made pin-on-disk apparatus that measured the interface temperature and corresponding friction coefficient. Static tests were performed to demonstrate the functionality and reliability of the thermocouple wires-combined temperature sensor (TCTS). Each TCTS showed good linearity and sensitivity and very similar response times for the thermocouple and critical temperature during sliding friction.

THE LOAD DEFLECTION RATE OF LOOPED WIRE AND ITS CHANGE BY HEAT TREATMENT (looped wire의 하중변형도와 열처리에 의한 변화)

  • Lee, Yong-Kook
    • The korean journal of orthodontics
    • /
    • v.16 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was conducted to evaluate the effects of loop formation and heat treatment upon the elastic properties of orthodontic wires. The specimens selected were .016', .018', .016x.022', and .018x.022' sized stainless steel (standard) and cobalt-chromium-nickel wires, and were divided into 7 groups as; 1. straight non-heat treated 2. U looped non-heat treated 3. L looped non-heat treated 4. Circle looped non-heat treated 5. U looped heat treated 6. L looped heat treated 7. Circle looped heat treated Heat treatment was performed in Big Jane furnace at 850' F for 3 minutes. The elastic limit and the elastic range of each specimen were determined by bending test, and load deflection rate was computed from those values. The findings were as follows; 1. The formation of loop resulted in increased load-deflection rate for both stainless steel and cobalt-chromium-nickel wires. 2. The heat treated group showed higher load-deflection rate than non-heat treated group, which was more apparent in cobalt-chromiumnickel wire than in stainless steel wire. 3. L loop had the highest load-deflection rate among 3 types of loops, followed by U loop and circle loop. 4. The specimens with greater diameter displayed the more increase in load-deflection rate by looping and heat treatment.

  • PDF