• 제목/요약/키워드: Wireless-powered communication

검색결과 70건 처리시간 0.032초

TSR 릴레이를 활용한 무선 전력 Backscatter 통신 성능 분석 (Performance Analysis of Wireless-powered Backscatter Communication with TSR-based Relay)

  • 박시우;박재현;황규성
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1164-1170
    • /
    • 2020
  • In this paper, we consider the wireless-powered backscatter communication which consists of a power beacon, a source, a relay, and a destination. For the proposed wireless-powered backscatter communication, the source transmits its signals to both the relay and the destination via a backscattering channel and the relay which has a rechargeable battery performs an energy harvesting as well as an information forwarding based on the time switching relay (TSR) protocol. Based on the decode-and-forward (DF) relay transmission, we investigate performances of the proposed system in terms of outage probability and transmission rate in which the exact performance analysis of outage probability is given. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

Achievable Rate Region Bounds and Resource Allocation for Wireless Powered Two Way Relay Networks

  • Di, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.565-581
    • /
    • 2019
  • This paper investigates the wireless powered two way relay network (WPTWRN), where two single-antenna users and one single-antenna relay firstly harvest energy from signals emitted by a multi-antenna power beacon (PB) and then two users exchange information with the help of the relay by using their harvested energies. In order to improve the energy transfer efficiency, energy beamforming at the PB is deployed. For such a network, to explore the performance limit of the presented WPTWRN, an optimization problem is formulated to obtain the achievable rate region bounds by jointly optimizing the time allocation and energy beamforming design. As the optimization problem is non-convex, it is first transformed to be a convex problem by using variable substitutions and semidefinite relaxation (SDR) and then solve it efficiently. It is proved that the proposed method achieves the global optimum. Simulation results show that the achievable rate region of the presented WPTWRN architecture outperforms that of wireless powered one way relay network architecture. Results also show that the relay location has significant impact on achievable rate region of the WPTWRN.

무선전력 통신네트워크를 위한 Backscatter 통신 (Backscatter Communication for Wireless-Powered Communication Networks)

  • 최신혁;김동인
    • 한국통신학회논문지
    • /
    • 제40권10호
    • /
    • pp.1900-1911
    • /
    • 2015
  • 본 논문에서는 무선 센서 네트워크 환경에서 전력의 제약이 있는 센서들의 장거리통신을 가능케 하는 backscatter 통신에 대해 소개하고, 이를 접목해 무선전력 통신네트워크(wireless-powered communication networks, WPCN)의 doubly near-far 문제를 해결하는 방안을 논의한다. Backscatter에 기반한 WPCN에서 유저들은 하이브리드 엑세스 지점으로부터 전송되는 신호와 반송파 송신기로부터 전송되는 반송파 신호로부터 에너지를 수집한 후, 주파수 편이 변조를 이용한 반송파 신호의 반사를 통해 정보를 전송하게 된다. 위의 통신환경에서 energy-free 조건과 신호대 잡음비 outage 영역을 정의한다. 또한 본 논문에서는 에너지 수집과 정보 전송을 위한 최적의 시간 할당 방법을 제안하고, 이를 통해 시스템 전체의 정보전송 효율을 최대화할 수 있는 backscatter 기반의 수집 후 전송 프로토콜을 설계한다. 실험결과를 통해 제안한 backscatter 기법이 종래의 WPCN에 비해 광범위한 서비스 영역과 축소된 신호대 잡음비 outage 영역을 갖는 것을 보였고, 정보전송 효율을 최대화할 수 있음을 보였다.

무선전력 통신 네트워크에서 최적의 멀티홉 전송 방식 (An Optimal Multi-hop Transmission Scheme for Wireless Powered Communication Networks)

  • 최현호
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1679-1685
    • /
    • 2022
  • 본 논문에서는 무선전력 통신 네트워크에서 소스에서 목적지 노드까지 종단간 데이터 전송률을 최대화하기 위한 최적의 멀티홉 전송 방식을 제안한다. 에너지 하베스팅을 하면서 멀티홉 전송을 위한 프레임 구조를 제시하고, 노드간 서로 다른 에너지 수확량과 링크 품질을 고려하여 종단간 전송률을 최대화하는 각 노드의 전송 시간을 수학적 분석을 통하여 도출한다. 아울러, 고려하는 무선전력기반 멀티홉 전송의 시스템 모델링을 통하여 최적화 문제를 도출하고, 이 최적화 문제가 convex 함을 보임으로써 전역 최적해가 존재함을 증명한다. 이를 통하여 최적화 문제를 계산 가능한 형태로 변형하여 손쉽게 최적해를 찾는다. 제안한 최적 멀티홉 전송 방식은 모든 링크의 전송률이 같아지도록 노드별 전송 시간을 최적으로 할당함으로써 종단간 전송률을 최대화한다.

Full-Duplex Operations in Wireless Powered Communication Networks

  • Ju, Hyungsik;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.794-802
    • /
    • 2017
  • In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H-AP) and multiple user equipment (UE), all of which operate in full-duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD-WPCN-FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self-interference cancellation capability at the H-AP. Compared to the WPCN with FD H-AP and half-duplex (HD) UE, FD-WPCN-FD achieved an 18% throughput gain. In addition, the throughput of FD-WPCN-FD was shown to be 25% greater than that of WPCN in which an H-AP and UE operated in HD.

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

섹터기반 무선전력 센서 네트워크를 위한 최적 클러스터 헤드 선택 방법 (Optimal Cluster Head Selection Method for Sectorized Wireless Powered Sensor Networks)

  • Choi, Hyun-Ho
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.176-179
    • /
    • 2022
  • In this paper, we consider a sectorized wireless powered sensor network (WPSN), wherein sensor nodes are clustered based on sectors and transmit data to the cluster head (CH) using energy harvested from a hybrid access point. We construct a system model for this sectorized WPSN and find optimal coordinates of CH that maximize the achievable transmission rate of sensing data. To obtain the optimal CH with low overhead, we perform an asymptotic geometric analysis (GA). Simulation results show that the proposed GA-based CH selection method is close to the optimal performance exhibited by exhaustive search with a low feedback overhead.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

Joint Resource Allocation Scheme for OFDM Wireless-Powered Cooperative Communication Networks

  • Liang, Guangjun;Zhu, Qi;Xin, Jianfang;Pan, Ziyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1357-1372
    • /
    • 2017
  • Energy harvesting techniques, particularly radio frequency energy harvesting (RF-EH) techniques, which are known to provide feasible solutions to enhance the performance of energy constrained wireless communication systems, have gained increasing attention. In this paper, we consider a wireless-powered cooperative communication network (WPCCN) for transferring energy in the downlink and forwarding signals in the uplink. The objective is to maximize the average transmission rate of the system, subject to the total network power constraint. We formulate such a problem as a form of wireless energy transmission based on resource allocation that searches for the joint subcarrier pairing and the time and power allocation, and this can be solved by using a dual approach. Simulation results show that the proposed joint optimal scheme can efficiently improve system performance with an increase in the number of subcarriers and relays.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.