• Title/Summary/Keyword: Wireless transmitter

Search Result 466, Processing Time 0.026 seconds

Analysis on Performance for Network Sharing in Adjacent Channels (인접채널에서 네트웍 공유를 위한 성능 분석)

  • Cho, Ju-Phil;Lee, Ock-Goo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.179-184
    • /
    • 2011
  • In this paper, we analyze the sharing parameters in order to co-use of different communication systems in adjacent channels. We analyze the performance result according to various density of interfering transmitter and transmitter output in hetero systems. In order to get the relationship with between density of interfering transmitter and transmitter output, we consider the case that WiBro is an interfering transmitter an WLAN is a victim receiver. When the center frequency of WLAN is 687MHz and interferer density is 50/$km^2$, required guard band is 10MHz. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Performance Analysis on Sharing of an Adjacent Channel using Guardband and Maximum Allowable Transmitter Power in TV White Space (TV 방송대역에서 보호대역과 최대허용송신출력을 이용한 인접채널 공유 성능 분석)

  • Cho, Ju-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.903-909
    • /
    • 2012
  • In this paper, we analyze the sharing performances for coexistence of different communication systems between adjacent channels in TV White space. We analyze the parameter performance result according to various density of interfering transmitter and transmitter output. Two cases are analyzed to consider an interference effect between each system. First, WiBro is an interfering transmitter and WLAN is a victim receiver. Second, WLAN is an interfering transmitter and WiBro is a victim receiver. Free space channel model, Extended Hata and IEEE 802.11 model are used for channel environment. Analyzed coexistence results under various co-use scenarios may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in adjacent frequency.

A Parameter Analysis for System Co-existence between Adjacent Channels in Extended Hata Channel Environment (Extended Hata 채널 환경에서 인접채널간 시스템 공존을 위한 파라미터 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.879-884
    • /
    • 2012
  • In this paper, we analyze the sharing parameters in order to co-use of different communication systems in adjacent channels. We analyze the performance result according to various density of interfering transmitter and transmitter output in hetero systems. In order to get the relationship with between density of interfering transmitter and transmitter output, we consider the case that WiBro is an interfering transmitter an WLAN is a victim receiver. When the interferer density is 50/$km^2$ and the center frequency of WLAN and WiBro are 185 and 201MHz respectively, required guard band is 4MHz. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Efficiency Improvement for Dual Mode Amplifier Design Using Bias Switching (바이어스 스위칭을 이용한 이중 모우드 전력 증폭기 효율 개선)

  • Lee Young-Min;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.97-102
    • /
    • 2006
  • This paper presents a novel technique of efficiency enhancement for dual mode transmitter. The future dual mode transmitter incorporates an amplifier which generates different level of output for different applications. For WiBro, the output is 1W at 2.3GHz, and for wireless LAN, the output is less than 100mW at 2.4GHz. Simple bias switching is proposed to get the higher efficiency at both of the applications. Without the bias switching the amplifier shows 10% PAE at 20dBm output for wireless LAN, but using a preselected lower bias, the efficiency improves up to 35%. This technique becomes more useful as the need of many function convergence terminals is increasing.

An Energy-efficient MAC Protocol in Cognitive Radio Environment (Cognitive Radio 환경을 고려한 에너지 효율적인 MAC 프로토콜)

  • Kim, Byung-Boo;Rhee, Seung-Hyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.81-91
    • /
    • 2008
  • In mobile wireless communications, there is a new approach that uses the lacking spectrum efficiently. A cognitive radio is a device that can changes its transmitter parameters based on interaction with the environment in which it operates. At present, the wireless communication standard for wireless device contains power-saving modes or energy efficient mechanisms which cuts off the power of transmitter and receiver for power-saving. However, in cognitive radio environment, every device has the Quiet Period for searching channel and existing energy-saving method is not appropriate to be adjust to cognitive radio environment. In this paper, we propose an energy-efficient MAC protocol of mobile device in cognitive radio environment and prove the improvement of proposed method.

  • PDF

Design and simulation of a rectangular planar printed circuit board coil for nuclear magnetic resonance, radio frequency energy harvesting, and wireless power transfer devices

  • Mostafa Noohi;Adel Pourmand;Habib Badri Ghavifekr;Ali Mirvakili
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.581-594
    • /
    • 2024
  • In this study, a planar printed circuit board (PCB) coil with FR4 substrate was designed and simulated using the finite element method, and the results were analyzed in the frequency domain. This coil can be used in wireless power transfer (WPT) as a transmitter or receiver, eliminating wires. It can also be used as the receiver in radio frequency energy-harvesting (RF-EH) systems by optimizing the planar PCB coil to convert radio-wave energy into electricity, and it can be employed as an excitation (transmitter) or receiver coil in nuclear magnetic resonance (NMR) spectroscopy. This PCB coil can replace the conventional coil, yielding a reduced occupied volume, a fine-tuned design, reduced weight, and increased efficiency. Based on the calculated gain, power, and electromagnetic and electric field results, this planar PCB coil can be implemented in WPT, NMR spectroscopy, and RF-EH devices with minor changes. In applications such as NMR spectroscopy, it can be used as a transceiver planar PCB coil. In this design, at frequencies of 915 MHz and 40 MHz with 5 mm between coils, we received powers of 287.3 μW and 480 μW, respectively, which are suitable for an NMR coil or RF-EH system.

Design of High Efficiency Switching Mode Class E Power Amplifier and Transmitter for 2.45 GHz ISM Band (2.45 GHz ISM대역 고효율 스위칭모드 E급 전력증폭기 및 송신부 설계)

  • Go, Seok-Hyeon;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • A power amplifier of 2.4 GHz ISM band is designed to implement a transmitter system. High efficiency amplifiers can be implemented as class E or class F amplifiers. This study has designed a 20 W high efficiency class E amplifier that has simple circuit structure in order to utilize for the ISM band application. The impedance matching circuit was designed by class E design theory and circuit simulation. The designed amplifier has the output power of 44.2 dBm and the power added efficiency of 69% at 2.45 GHz. In order to apply 30 dBm input power to the designed power amplifier, voltage controlled oscillator (VCO) and driving amplifier have been fabricated for the input feeding circuit. The measurement of the power amplifier shows 43.2 dBm output and 65% power added efficiency. This study can be applied to the design of power amplifiers for various wireless communication systems such as wireless power transfer, radio jamming device and high power transmitter.

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.

Feedback Simplification Scheme for Wireless Power Transfer Systems Based on Beamforming with Phased Array Antenna (위상배열 안테나를 이용한 빔포밍 기반 무선전력전송 시스템의 피드백 간소화 기법)

  • Roh, Tae-Rae;Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.195-201
    • /
    • 2019
  • The effectiveness of the phased array antenna in wireless power transfer systems is due to its ability to form a beam pattern towards the desired direction. To maximize the efficiency of wireless power transfer through beamforming, the transmitter must recognize the information on the optimal transmission path. To achieve this, the transmitter usually transmits pilot signals periodically and the receiver extracts the optimal beamforming weights using the pilot signals. The receiver then feeds the beamforming weights back to the transmitter. In general, the amount of feedback increases with the number of antennas, which causes feedback overhead when there is a large number of antennas. In this paper, we propose a feedback simplification scheme based on the far-field approximation method. The simulation results are provided to validate the impact of the simplified feedback on the beam pattern.

Implementation of Inductive Wireless Power Transfer System based on LLC Converter without Wireless Communication between Tx and Rx (Tx-Rx간 무선통신이 필요 없는 LLC 컨버터 기반 유도형 무선전력전송 시스템 구현)

  • Kim, Moon-Young;Choi, Shin-Wook;Kang, Jeong-il;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2019
  • In general wireless power transfer systems (WPTSs), power transfer is controlled by the wireless communication between a transmitter (Tx) and a receiver (Rx). However, WPTS is difficult to apply in electronic products that do not have batteries, such as TVs. A WPTS with resonators based on a transformer of LLC series resonant converter is proposed in this study to eliminate wireless communication units between a Tx and an Rx. The proposed system operates at the boundary of the resonance frequency, and the required power can be stably supplied to authorized devices even though some misalignment occurs. Moreover, standby power standards for the electronic product can be satisfied.