• Title/Summary/Keyword: Wireless transmission communication

Search Result 1,497, Processing Time 0.03 seconds

Performance Analysis of Wireless-powered Backscatter Communication with TSR-based Relay (TSR 릴레이를 활용한 무선 전력 Backscatter 통신 성능 분석)

  • Park, Si Woo;Park, Jae Hyun;Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1164-1170
    • /
    • 2020
  • In this paper, we consider the wireless-powered backscatter communication which consists of a power beacon, a source, a relay, and a destination. For the proposed wireless-powered backscatter communication, the source transmits its signals to both the relay and the destination via a backscattering channel and the relay which has a rechargeable battery performs an energy harvesting as well as an information forwarding based on the time switching relay (TSR) protocol. Based on the decode-and-forward (DF) relay transmission, we investigate performances of the proposed system in terms of outage probability and transmission rate in which the exact performance analysis of outage probability is given. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

LED Communication-based Multi-hop Wireless Transmission Network System (LED 통신기반 멀티 홉 무선 전송네트워크시스템)

  • Jo, Seung-Wan;Dung, Le-The;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.37-42
    • /
    • 2012
  • LED is just a semiconductor which can produce light. Currently, there are active research works on LED lighting technologies according to the growth of energy-saving environmental industry. Especially, LED communication is one of the active research works in these fields. In this paper, we design a LED communication-based multi-hop transmission wireless network system. The designed system consists of a transmission circuit system(transmitter) using LED and a receiving circuit system(receiver) using PD(photo detector) and OP-Amp, and relay system which can support multi-hop wireless network service with PD, OP-Amp, and LED, respectively. The experiments for the designed system are performed as follows. One computer is connected at the end of transmitter and receiver, respectively. There are two relays between transmitter and receiver, and text files are transmitted continuously by using text transmission programming. In this experiment, we test the performance with various baud rates, transmission ranges.

The Implementation of UWB and 60GHz Band Wireless Communication Technology for Wireless Home Network and Their Market Prospect (무선 홈네트워크 구현을 위한 UWB와 60GHz 대역 무선 통신 기술의 활용방안과 시장전망)

  • Hong, Seok-Soo;Park, Jong-Hun;Lee, Dong-Joo;Lee, Jae-Sup;Hong, Jung-Wan;Lie, Chang-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.2
    • /
    • pp.195-212
    • /
    • 2008
  • The demand of wireless communication system is increasing due to the development of computers and other digital media appliances. In particular, new wireless communication technology is necessary for implementation of home network since a lot of data transmission is occurred. Recently, two wireless communication technologies, Ultra Wide Band(UWB) and 60GHz band wireless communication technology, have being developed for high-speed data transmission and Wireless Personal Area Network(WPAN). In this paper, we study the present development condition of these two technologies and a role of them in home network. We also suggest the method to implement the home network using all wireless communication technologies. At the end, we outlook the market of WPAN and High Definition Multimedia Interface(HDMI).

  • PDF

Repeaterless Transmission Length on the Atmospheric Wireless Optical LOS Communication Links (대기 광 무선 LOS 통신링크에서 무중계 전송거리에 관한 연구)

  • Jung, Jin-Ho
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.194-199
    • /
    • 1998
  • In the atmospheric wireless optical communication system, the low power transmission can be accomplished by the high directivity of laser beam. But, the transmitted optical signal undergoes the serious influences by the atmospheric effects like absorption, scattering, and turbulence because the transmission channel is the atmospheric space. In this paper, therefore, we obtain the link equation for an atmospheric wireless optical LOS communication link under the atmospheric effects and find the repeaterless transmission length to estimate the system performance through the computer simulation. From the results of the computer simulation, we present the transmission length that is possible to transmit without a repeater at given data rates and know that data rate is decreased rapidly when the transmission length is increased slightly at given bit error rate.

  • PDF

Study on the Design of High Efficient Class-E Power Amplifier and Resonant Coils for High Efficient Wireless Power Transfer System (고효율 무선 전력 전송을 위한 고효율 E급 전력 증폭기 및 공진 코일 설계에 관한 연구)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.935-940
    • /
    • 2016
  • Recently, wireless power transmission system is gradually extended to technology in various fields such as lighting field, electric vehicles and smartphones wireless charging system. The largest of the two elements for high transmission efficiency of the wireless power transmission system are resonant coils and power amplifiers. In this paper, in order to build a high efficient wireless power transmission system, we introduce the resonance coil manufacturing method and high efficiency power amplifier design method that operates at 6.78MHz.

Development of Wireless Data Transmission System for LPWA-based Industrial Sites (LPWA 기반 산업현장의 무선 데이터 전송 시스템 개발)

  • Kwon, Hyuk;Cho, Kyoung-Woo;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Recently, there have been many studies on the IoT environment in which the sensors attached to the equipment automatically transmit and process the site information in real time through the network to control the equipment. The core of such a system is a network for data transmission and reception, and a wired network with wide transmission distance is a priority. However, in the case of a wired network, there is a problem that the time and cost consumed to configure the communication is higher than that of the wireless. In this paper, we propose LPWA - based wireless data transmission system using LPWA and BLE communication to solve this problem. The proposed system collects data from equipment through BLE and transmits data to the server using LPWA. Experimental results show that the spreading factor of maximum length of LPWA is 8, and the minimum length is 9.

A GTS Scheduling Algorithm for Voice Communication over IEEE 802.15.4 Multihop Sensor Networks

  • Kovi, Aduayom-Ahego;Bleza, Takouda;Joe, Inwhee
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • The recent increase in use of the IEEE 802.15.4 standard for wireless connectivity in personal area networks makes of it an important technology for low-cost low-power wireless personal area networks. Studies showed that voice communications over IEEE 802.15.4 networks is feasible by Guaranteed Time Slot (GTS) allocation; but there are some constraints to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks with the goal of achieving fairness and optimization of resource allocation. The proposed scheme uses a greedy algorithm to allocate GTSs to devices for successful completion of voice transmission with efficient use of bandwidth while considering closest devices with another factor for starvation avoidance. We analyze and validate the proposed scheme in terms of fairness and resource optimization through numeral analysis.

Implementation of a Transmission Error Control Protocol for Biological Data in a Wireless Data Communication System (무선환경에서의 생체 데이터 전송 오류 제어 프로토콜의 구현)

  • Lim, Young-Ho;Yoon, Tae-Sung;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.450-453
    • /
    • 2002
  • In emergency telemedicine system based on wireless communication system with limited transmission capacity, it is necessary to transmit the biological data (ECG, BP, Respiration, $SpO_2$) of the patient continuously and reliably in real time. For this service, it is necessary to data compression and error control. In this study, we designed an protocol for error control in application layer and implemented it on the biological data transmission program for an emergency telemedicine system based on wireless data communication system.

  • PDF

Backscatter Communication for Wireless-Powered Communication Networks (무선전력 통신네트워크를 위한 Backscatter 통신)

  • Choi, Shin Hyuk;Kim, Dong In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1900-1911
    • /
    • 2015
  • In this paper, we introduce backscatter communication for power-limited sensors to enable long-range transmission in wireless sensor networks, and envision a way to avoid doubly near-far problem in wireless-powered communication network (WPCN) with this technology. In backscatter based WPCN, users harvest energy from both the signal broadcasted by the hybrid access point and the carrier signal transmitted by the carrier emitter in the downlink, and then transmit their own information in a passive way via the reflection of the carrier signal using frequency-shift keying modulation in the uplink. We characterize the energy-free condition and the signal-to-noise ratio (SNR) outage zone in backscatter based WPCN. Further, we propose backscatter based harvest-then-transmit protocol to maximize the sum-throughput of the backscatter based WPCN by optimally allocating time for energy harvesting and information transmission. Numerical results demonstrate that the backscatter based WPCN increases significantly the transmission range and diminishes greatly the SNR outage zone.

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz) (상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.